1) phase operator
相算符
1.
Dual eigenvectors of the Susskind-Glogower phase operators for a two-mode field;
双模场中Susskind-Glogower相算符的对偶本征矢(英文)
2.
A new quantization scheme is proposed in which number n of the electric charge q(q=en) is quantized as the charge number operator and the relation between electric current and phase operatorθcan be derived, in this way the quantization of mesoscopic LC circuit in the context of number-phase is realized and .
传统的介观LC回路的量子化是将电量q和电感与电流的乘积L×I分别作为量子力学中的坐标算符Q和动量算符P来处理;本文采取另外一种量子化的观点,即将电量q(q=en)中的n作为荷数算符,并建立电流和相算符θ之间对应关系,就能实现介观LC回路的数-相范畴的量子化,并得到以数-相算符表示的Hamiltonian;通过引进纠缠态表象,对超导Josephson结也可以实现Cooper对数-相量子化,并给出了相应的物理解释。
2) phase operator
位相算符
1.
Using the pegg-Barnett phase operator formalism we have introduced phase operator and phase state basis in a finile-demensinal Hilbert space the phase operator repre sentation and their properties are discussed in detail for a two-state system.
本文利用Pegg—Barnett位相算符形式引入了有限维Hilbert空间的位相算符和位相态基,详细讨论了二态系统的位相算符表示及性质。
2.
In this sense, Susskind and Glogower′s exponential phase operator is unitary.
众所周知,引入量子电磁场的位相算符所遇到的困难已经有很长时间了。
3) phase operator
相位算符
1.
To study the phase properties of such states,the expectation values of the Susskind phase operators in these states are calculated exactly and the number-phase uncertainty relations in the limits of small r and large r are examined r.
为进一步研究压缩真空激发态的相位性质,本文严格计算了这种态中 Susskind 相位算符期待值,并分别讨论了压缩参数 r 较小和较大时粒子数-相位不确定关系。
2.
Dirac phase operator, SG phase operator and PB phase operator are analyzed in details.
详细分析了Dirac相位算符、S-G相位算符、P-B相位算符,并对它们的一些性质作比较,系统地论述它们的优点和不足之处。
4) phase operators
相位算符
1.
Two-mode phase operators and eigenstates of the supersymmetric harmonic oscillator;
超对称谐振子的双模相位算符及其本征态
2.
In the paper, we define two independent phase operators and obtain corresponding eigenstates in twomodel phase space by improving operators which twomodel squeezing coherent states correspond.
在双模相位空间里,利用双模压缩相干态对应地算符定义二类独立的相位算符并相应的求出其本征态。
5) PB phase operator
PB位相算符
6) phase difference operator
位相差算符
补充资料:Γ算符
分子式:
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
CAS号:
性质: 或称Γ算符,其定义为:。即它是右矢|ψ>与左矢<ψ|的乘符号。若用波函数来表示,则密度矩阵可表示为:应用密度矩阵概念可把求力学量算符G平均值的积分问题简化为简单的代数问题,因G与г算符的乘积的迹即其平均值<G>=<ψ|G|ψ>=TrGΓ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条