1) the phase operator expectation value
相位算符期待值
1.
The time evolution of the phase probability distribution, the phase operator expectation value and the phase fluctuation are obtained.
本文运用Pegg-Barnett厄米相位公式[1,2],研究了类克尔媒质中双光子J-C模型腔场的相位特性,讨论了双光子J-C模型腔场相位几率分布、相位算符期待值和相位涨落的演变;研究了类克尔媒质与腔场的非线性作用对腔场相位特性的影响。
2) phase operator
位相算符
1.
Using the pegg-Barnett phase operator formalism we have introduced phase operator and phase state basis in a finile-demensinal Hilbert space the phase operator repre sentation and their properties are discussed in detail for a two-state system.
本文利用Pegg—Barnett位相算符形式引入了有限维Hilbert空间的位相算符和位相态基,详细讨论了二态系统的位相算符表示及性质。
2.
In this sense, Susskind and Glogower′s exponential phase operator is unitary.
众所周知,引入量子电磁场的位相算符所遇到的困难已经有很长时间了。
3) phase operator
相位算符
1.
To study the phase properties of such states,the expectation values of the Susskind phase operators in these states are calculated exactly and the number-phase uncertainty relations in the limits of small r and large r are examined r.
为进一步研究压缩真空激发态的相位性质,本文严格计算了这种态中 Susskind 相位算符期待值,并分别讨论了压缩参数 r 较小和较大时粒子数-相位不确定关系。
2.
Dirac phase operator, SG phase operator and PB phase operator are analyzed in details.
详细分析了Dirac相位算符、S-G相位算符、P-B相位算符,并对它们的一些性质作比较,系统地论述它们的优点和不足之处。
4) phase operators
相位算符
1.
Two-mode phase operators and eigenstates of the supersymmetric harmonic oscillator;
超对称谐振子的双模相位算符及其本征态
2.
In the paper, we define two independent phase operators and obtain corresponding eigenstates in twomodel phase space by improving operators which twomodel squeezing coherent states correspond.
在双模相位空间里,利用双模压缩相干态对应地算符定义二类独立的相位算符并相应的求出其本征态。
5) PB phase operator
PB位相算符
6) phase difference operator
位相差算符
补充资料:力学量的可能值和期待值
在量子力学中,力学量F用作用于波函数上的算符弲表示。在数学上,对于一个算符,满足
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
的函数 ui(r)称为弲的本征函数,式中Fi是与r无关的数,称为本征值。如果ui(r)描写微观粒子的状态,则它必须满足单值、连续和有限的标准条件。在这种限制之下,上式中的本征值可以取一系列分立值,或取一定范围内的连续数值。
在测量力学量F时,观察到的只能是它的本征值。若一个力学量的本征值具有分立谱,我们说这个力学量是量子化的。
量子力学中假定力学量的全部本征函数组成一个完全系;这意思是说:描写体系的任一状态的波函数ψ都可以用力学量的本征函数ui展开:
在ψ和ui都是归一化的情况下,上式中的展开系数сi具有如下的物理意义:在ψ态中测量力学量时,得到结果为Fi的几率是|сi|2。
因此,若微观粒子的定态波函数是某力学量算符的本征函数ui(r),则在这一状态中,力学量F取确定值Fi。
在ψ态中对力学量进行多次测量,把所得结果加以平均,就得出力学量在ψ态中的期待值,以〈F〉表示:
上式称为力学量的期待值公式。如果ψ不是归一化的,那么期待值公式应写为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条