1) Integral operator solving process
积分算子求解法
1.
The solving process is named as integral operator solving process, thus it is fended provide a new, simple and immediate solving process of the boundary value problems of abstract kinetic equations.
将一类抽象Volterra型线性积分算子用于求解抽象动力方程边值问题 ,此方法称为积分算子求解法 。
2.
We have obtained the solution of the boundary value problem of the abstract kinetic equation with a control parameter and reflecting boundary condition by integral operator solving process.
用积分算子求解法 ,得到了具有反射边界条件的、含控制参数的抽象动力方程边值问题的解。
3.
The new solving process is named as integral operator solving process.
这种新的求解法我们称为积分算子求解
2) integral operator solution
积分算子解法
1.
The conclusion derived from the comparison between the two methods is useful to the integral operator solution.
积分算子解法是求解粘弹性问题的一种重要的解析方法,推演材料的积分型本构方程是此种求解方法的重要步骤。
3) integrktion solving method
积分求解法
4) integrationn by decomposition
分解求积法
5) integral solution operators
积分算子解
6) integral solution operator
积分解算子
补充资料:Fourier积分算子
Fourier积分算子
Fourier integral operator
关于M绷oB典则算子与又微分(或又伪微分(【3】))算子的交换公式. 设L(x.久一’D)为具有C优类实象征L(x,P)(见算子的象征(syln伙月of助opemtor))的微分算子,并设L(*,P)在A上为零.再设A与体积元而在HajrnUton方程组 立=丝立=_丝 d:刁尸’d:ax下不变,那么下列交换公式为真(这里甲‘C孑(A),又一的)二 乙(x,又一’刀)(K人中)(x)= 一牛、‘I;,+o(,一,)],(,) 葱又 _r dl召日,五(x.。、1 R甲=l共井一令乙二于于冬子=}中, L击2,昌日xj日Pj」了’其中d/d;为沿Harr山ton方程组的流的积分曲线的导数.关于展式(1)中的其余各项以及余项估计,见[3].方程R,一o称为活臀方谬(~port聊tion).此交换公式蕴涵下述结果:若R伞“O,则函数“二K,职为方程L(x,又一’D)u=o的形式渐近解. M脚oB典则算子方法使人们能解下述问题. l)对严格双曲偏微分方程组,对Din那与Max-忱U方程组,对弹性理论中的方程组,对女城由咨r方程等具有大范围(即任意有限时域)急速振荡初始数据的CauChy问题的渐近解的构造(见〔l],【6]一【9],又见拟经典遥近(q珑洛1~d巴粥iG扛appro汕nat沁n)),以及对某些混合型问题的解的构造(【4」). 2)自伴微分算子的本征值的级数的渐近展开的构造,这里的微分算子是关于相应Hail云lton方程组不变的压g卫们罗流形上定义的(见【l],【3]). 3)对严格双曲偏微分方程组的基本解的直到光滑函数的渐近展开的构造(见【1],【5],【6]). 4) Gn先”函数的短波渐近式,散射问题的解与Sch耐i卿r方程散射幅度的构造,以及谱函数的渐近式的构造(见[5」一!71) 关于具复纤维的助脚呼流形上M抑。B典则算子的新形式已经发展起来(见【8],【9」). Foud巴积分算子(Fo~讯忱孚祖。沐份仍r).设X,Y为R犷,,R少中有界域,N=N.+从,r=XxYx(R梦\笼0}),并设u(夕)6C了(Y).算子 (、。、(、卜二一二孺丁ff。:,、·,,,。, 乙7T’一产‘吧公 R;Y ·P(x,y,口)。(y)dydo(2)称为Fo~积分算子.这里毋(相函数)为实的且关于0为1阶正齐次的,甲任C伙r),并且当口笋O时丈(z,a),r:甲。(z,。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条