1) regular operator
正则算子
1.
A class of lattice-subspace in regular operator space;
正则算子空间上的一类格子空间
2.
Also,it applies the single valued extension property to the perturbation of regular operator and the decomposition of the linear(operator.
给出了算子A具有单值延拓性质的特征;利用算子的单值延拓性质,研究了正则算子的摄动和线性算子的分解。
2) regularization operator
正则化算子
1.
In the case of the regularization operator with Laplacian,numerical results show that the new method performs better than traditional meth-ods and yields steadily close-to-optimal resto.
对正则化算子给定为Laplacian算子的情形予以测试,实验结果表明该文的恢复技术比传统方法的恢复性能好,恢复效果接近最佳且性能稳定。
2.
Using the regularization operator and approach process and a series of prior estimates, the existence of the global weak solutions was proved under the conditions that the mobility neither equals to a constant nor satisfies velocity saturation.
利用正则化算子和逼近过程,通过一系列先验估计,在迁移率既不为常数,又不满足速度饱和的条件下,证明了其整体弱解的存在性。
3) Module-Regular operator
模-正则算子
4) regular implication operator
正则蕴涵算子
1.
The properties of Triple I method based on the regular implication operator;
基于正则蕴涵算子的三I算法的性质
2.
The notions of conditional α-tautologies of formulas in the propositional logic systems based on regular implication operators are proposed.
在基于正则蕴涵算子的命题逻辑系统中给出了公式的条件α-重言式的概念,讨论了它们的性质,并分别在Lukasiew icz逻辑系统、Go¨del逻辑系统、乘积逻辑系统、L*逻辑系统及相应的n值逻辑系统中研究了条件α-重言式的分布。
3.
The concept of regular implication operators is introduced and it is proved that the Lukasiewicz operator, Gdel operator, product operator and R_0-operator are regular implication operations.
给出了正则蕴涵算子的概念,证明了Lukasiewicz算子、G del算子、乘积算子和R0 算子都是正则蕴涵算子。
5) Tickhonov regularizer
Tikhonov正则化算子
1.
In this paper,using the Tickhonov regularizer,we give a sufficient and necessary condition for the Moore-Penrose inverses T+_x being continuous,which plays an important role in the computation.
本文主要利用Tikhonov正则化算子给出了Moore-Penrose逆T+x连续的充分必要条件。
6) C-regularized resolvent operator family
正则预解算子族
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条