1) preregular linear operator
预正则线性算子
2) C-regularized resolvent operator family
正则预解算子族
3) positive linear operators
线性正算子
1.
In this paper,based on classical Korovkin theorem on convergence of positive linear operators,a Korovkin type theorem and more convenient conditions are obtained.
从经典线性正算子收敛的柯洛夫金定理出发,建立了适用范围更广的关于闭区间上连续函数的柯洛夫金定理。
2.
By using of the method of multiplier-enlargement,this paper discusses the asymptotic estimation of approximation of multivariate unbounded continuous functions with positive linear operators,and gives general asymptotic formulae.
利用扩展乘数法讨论了多元线性正算子改造为逼近多元无界连续函数的渐近估计 ,给出了具有一般性的渐近公式 作为实例 ,研究了多元非乘积型的Landau多项式算子逼近多元无界连续函数的渐近估计式 ,推广了前人的若干结
3.
By applying the classical appropriate functions 1, x x2 to the method of multiplier- enlargement, this paper established a certain theorem to approximate any unbounded continuous functions by modified positive linear operators.
将经典“试探函数组”1,x,x2应用于扩展乘数法;建立了一个判别线性正算子能否改造为逼近任意无界连续函数的充要条件。
4) positive linear operator
线性正算子
1.
The Korovkin theorems on convergence of positive linear operators are well-known ones of approximation theory of functions.
关于线性正算子收敛性方面的Korovkin定理是函数逼近论的著名定理。
5) linear positive operators
线性正算子
1.
The saturation of a class of linear positive operators in Besov spaces is studied.
讨论了一类线性正算子在Besov空间中的饱和
6) positive linear operator
正线性算子
1.
In this paper,we introduce new sequence of positive linear operators,which preserve x2 and converge each continuous function on [0,∞).
给出一类新的正线性算子序列,它具有保持x2不变的特性,并且关于[0,∞)上的连续函数收敛。
2.
The degree of approximation of uniform bounds positive linear operators in Lψ spaces is studied.
研究一类与Lp空间相关的Banach空间Lψ中的一致有界正线性算子列的逼近阶,得到了相应的Ko-rovkin量化定理。
3.
A necessary and sufficient condition for the direct theorem of the derivatives of positive linear operators is given.
给出了正线性算子导数正定理成立的充要条件,并证明了逆定理。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条