说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 函数最优化
1)  function optimization
函数最优化
1.
Experiments were taken on typical function optimization.
通过对典型测试函数最优化问题的求解试验,证明了该算法的有效性和优良性能,其全局收敛速度和最优解的质量明显高于标准遗传算法。
2)  multiple hump function optimization
多峰函数最优化
3)  best function
最优函数
4)  Concave Function and Optimization
凹函数及其最优化
5)  optimality function
最优性函数
1.
Each subproblem is relaxed and the optimality function is presented by using the minimax function.
应用图论、群论等,把该问题分解为有限多个子问题,在每个子问题中克服了优化变量的时断时续性质,并将子问题松弛化,利用极大极小函数给出了松弛子问题的最优性函数,该函数在其零点使松弛子问题的一阶必要条件成立。
2.
The conclusion of equivalence between the optimality function and the one-order optimality condition is concluded.
论述了最优性函数与一阶最优性条件的等价性。
3.
The contents include the layout optimization models of the difform graph elements, the optimality conditions , the optimality functions, the optimization algorithms for the subproblems, the algorithms for the non-overlap constraints and the unproved genetic algorithm.
主要包括不同图元的布局优化模型、子问题的最优性条件、最优性函数和优化算法、判断不干涉性算法及改进的遗传算法。
6)  optimal value function
最优值函数
1.
Firstly,the mixed-integer bi-level programming is transformed into a single level continuous optimization problem by virtue of penalty function concept and optimal value function tool.
利用罚函数思想和最优值函数的概念将混合整数双层规划转化为连续变量的单层非线性规划,然后用事先确定步长的凸组合算法迭代求解此单层非线性规划,进而得到原双层规划的局部最优解。
2.
In the paper,We define a kind of continuous concepts of optimal value function on point-to-set maps and discuss the continuity of optimal value function on point-to-set maps.
给出了集值映射的连续性概念,讨论了集值映射上最优值函数的连续性,给出在不等式约束、等式和不等式约束情况下最优值函数的连续性定理,并针对最优值函数的方向导数给出了一个在新的约束规格条件下,最优值函数的连续性定理。
3.
A set of first-order necessary optimality conditions based on the the upper and lower bounds of directional derivatives of the optimal value function of lower problem are proposed.
首先,利用下层问题最优值函数的方向导数的上下界的性质给出一阶最优性条件。
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条