1) solution space of the matrix equation
矩阵方程的解空间
3) solutions of matrix function equations
矩阵函数方程的解
4) How to Solve Matrix Equation
怎样解矩阵方程
5) space covariance matrix
空间协方差矩阵
1.
A revised algorithm is proposed toreconstruct a far field approximation space co-variance matrix at the same orientation,which isused to modify the space covariance matrix ob-tained by a uniform Iinear array from finite dis-tance mechanical noise sources using.
对均匀线阵接收一定距离的机器多噪声源得到的空间协方差矩阵提出一种修正算法,以重构在相同方位上的运场近似空间协方差矩阵。
补充资料:矩阵微分方程
矩阵微分方程
matrix differential equation
矩阵微分方程【n.七议创晚ren创阅娜‘扣;M盯p“,Hoe几.巾中epe皿明一a几‘Hoe ypa二eH加e」 一个方程,以其中出现的函数的矩阵及其导数为未知量. 考虑下列形式的线性矩阵微分方程: X,=A(t)X,reR,(l)其中A(t)为具有局部Lebesgue可积元的n xn维矩阵函数,设X(约是方程(l)的满足条件X(t。)=I的绝对连续的解,这里I是单位矩阵.这时,向量函数x(r)=X(t)h(h‘R”)是线性方程组 x‘=A(t)x(2)满足条件x(t。)二h的解.反之,如果h:,…,h。6R”,而x,(t)是方程组(2)满足条件x‘(t。)=h‘(i=1,…,n)的解,则以解x‘(t)为列的矩阵是矩阵微分方程(l)的解.此外,如果向量h:,…,h。是线性无关的,则对于所有的踌R,detX(t)笋0. 方程(l)是下列矩阵微分方程(产生于稳定性理论)的特殊情况: X‘=A(r)X一XB(t)+C(t).(3)方程(3)的具有初始条件X(t。)=X。的解由下列公式给出: X(t)二U(t,t。)X。V(t,t。)+ +丁。(:,:)e(,):(:,:)己:, 亡O其中U(:,。)是方程(1)的具有条件X(s,s)=I的解,而V(t,、)是满足条件X(:,:)=I的矩阵微分方程X‘=B(OX的解. 在各种应用问题(镇定理论、最优控制理论、控制系统的滤过理论等等)中,所谓Rieeati矩阵微分方程(例亩议Rlccati differen杭习闪业石。n) X‘=A(t)X一XB(t)+C(t)+XD(t)X起着重要作用.例如,Riccati矩阵方程 x,=一(尸(t)+又I)Tx一X(F(t)+几I)一 一I+XG(t)G丁(t)X(这里T代表转置)对又)0在直线R上具有有界解X(t),并且对所有的h6R”,作R和某个。>O,不等式hTX(t)h)。hrh成立,则由反馈律u=一GT(t)X(t)x/2封闭的可控系统 x’=F(t)x+G(t)u,x任R”,u任R用的每个解都满足不等式 }x(t)}簇M lx(s)Ie一’(‘一’),s(t,这里l·l是Euc石d范数,且M与s无关.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条