1) continual state spatial field
连续状态空间场
1.
Modeling dynamic evolution of continual state spatial field based on CA and AR method;
基于CA和AR方法的连续状态空间场动态演化模拟
2) continuous state space
连续状态空间
1.
Aiming at the reinforcement learning controller design under continuous state space,a new Q-learning method based on a support vector machine(SVM) was proposed.
针对连续状态空间下的强化学习控制问题,提出一种基于支持向量机的Q学习方法。
3) continuous state and decision space
连续状态和决策空间
1.
We used this method to solve a typical inventory control problem with continuous state and decision space.
本文采用一种强化学习算法—在线Q(λ)算法来进行MDP自适应决策,并用神经网络实现该算法来有效地求解了一类典型的有连续状态和决策空间的库存控制问题。
4) continuous state
连续状态
1.
Denoising method of anisotropic diffusion based oncontinuous state wavelet threshold
基于连续状态小波阈值的各向异性扩散去噪方法
2.
In this paper,a class of strong limit theorem about the non-homogeneous Markov chain taking values inthe continuous state are obtained in virtue of the notion of likelihood ratio and martingale convergence theorem.
利用似然比的概念及鞅收敛定理,得到取值于连续状态非齐次马氏链的强极限定理。
3.
The reliability of the system which consists of continuous state components is discussed in this paper.
本文讨论了连续状态部件构成的系统的可靠性。
5) continuous space
连续空间
1.
For reinforcement learning control in continuous spaces,a Q-learning method based on a self-organizing fuzzy RBF(radial basis function) network is proposed.
针对连续空间下的强化学习控制问题,提出了一种基于自组织模糊RBF网络的Q学习方法。
2.
This paper is to study genetic algorithm in the unified framework of stochastic processes in continuous space.
文中在连续空间统一的随机过程框架下 ,分析了遗传算法群体的概率密度序列的演化过程 ,给出并证明了群体概率密度的递归公式 。
3.
To overcome the multiple redundancy and low efficient solving of genetic algorithms as a result of no feedback ability, as well as low speed of ant colony algorithms owing to absence of original pheromone, a modified ant colony algorithm has been improved, which is capable of searching in continuous space, to integrate with genetic algorithm to complement each other’s advantages.
改进了蚁群算法,使其具备在连续空间的搜索能力,并与遗传算法融合,形成优势互补,克服了遗传算法的无反馈能力导致无用的冗余迭代、求解效率低以及蚁群算法初期信息素匮乏导致算法速度慢的不足。
6) discrete time and continuous state
离散时间连续状态
1.
In this paper, the convergent conditions in sequence or parallel update mode and the sufficient condition with only one global stable state for Hopfield network model with discrete time and continuous states when its neurons?activation function is non-decreasing (not being strictly monotone increasing) are discussed.
主要讨论离散时间连续状态的Hopfield网络模型中当神经元的激活函数为单调增函数(不一定严格单调增)时,并行和串行收敛的充分条件以及具有全局惟一稳定点的充分条件。
补充资料:离散时间状态空间模型
分子式:
CAS号:
性质:状态空间模型的一种,是时间变量为离散的状态空间模型。
CAS号:
性质:状态空间模型的一种,是时间变量为离散的状态空间模型。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条