说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 准循环矩阵
1)  quasi-cyclic matrix
准循环矩阵
1.
Determinant of quasi-cyclic matrix are studied as generalization of determinant of cyclic matrix and calculating formular are given in this paper.
推广循环矩阵的行列式为准循环矩阵的行列式 ,给出了相应的计算公式 。
2.
Then it gives the definitions of quasi-cyclic matrix and generalized cyclic matrix,and gives the methods of demand their inverses and determinants by genetalized the above appoach.
然后讨论了推广的循环矩阵,即准循环矩阵和广义循环矩阵,利用类似方法,也给出了它们的求逆阵和求行列式的方法。
2)  QC matrix
准循环生成矩阵
3)  circulant matrices
循环矩阵
1.
Eigenvalues of a kind of circulant matrices and its application on subdivision;
一类循环矩阵的特征值及其在细分方法中的应用
2.
VLSI decoding design of low-density parity-check codes based on circulant matrices
基于循环矩阵的低密度校验码的VLSI译码设计
3.
Making use of some relations between discrete Fourier transformation and convolution, I give a sufficiency and necessary condition which estimates that a matrix is a circulant matrix, and give concretely an accounting formula of m-orders circulant matrices.
利用离散Fourier变换与卷积的关系,给出了判断一个矩阵为循环矩阵的充要条件,并具体给出了一种求循环矩阵的m次幂通项的计算公式。
4)  circulant matrix
循环矩阵
1.
An algorithm for computing the inverse of two kind circulant matrix;
两类循环矩阵求逆的一种算法
2.
On the properties and generalized inverse of (-1)-circulant matrix
(-1)-循环矩阵的性质及广义逆
3.
Based on the special charicteristics of circulant matrix, a new formula of inversion for a type of specific matrix is proved in this paper.
 求逆矩阵通常的方法是初等变换法或伴随矩阵法,计算量大且容易出错,本文利用循环矩阵的特殊性质给出了一类特殊循环矩阵求逆的计算公式,简化了一类特殊循环矩阵求逆的计算。
5)  circular matrix
循环矩阵
1.
Four theorems are presented and proved for eigenvalues and eigenvectors of circular matrix including symmetrical circular matrix, which forms the uniform mathematical principle of phase-sequence transformation for 3-phase and high phase order AC power networks.
给出了循环矩阵和对称循环矩阵的特征值和特征向量的4个基本定理:构成了含三相在内的多相交流电网相序变换的统一数学原理。
2.
Circular matrix may be diagonalized while diagonalized matrix is equal to similar circular matrix.
循环矩阵可对角化,矩阵可对角化等价相似循环矩
3.
The generalization of a theorem for circular matrix is given by using generalized Vandermonde matrix,and several properties of generalized circular matrix are obtained.
利用范德蒙矩阵对循环矩阵的一个定理给出了推广,并得到了广义循环矩阵的几个性质。
6)  cyclic matrix
循环矩阵
1.
The inverse matrix of the special binary symmetry cyclic matrix;
特殊二元对称循环矩阵的逆矩阵
2.
On the inverse matrix of the double-binary level-2 (r_1,r_2)-cyclic matrix of type (n,m);
双二元(n,m)型二重(r_1,r_2)循环矩阵的逆矩阵
3.
On the inverse matrix of the binary level-2 cyclic matrix of type (n,2);
二元(n,2)型二重循环矩阵的逆矩阵
补充资料:准性循环
分子式:
CAS号:

性质:又称准性生殖。某些真菌同种异株间发生体细胞融合,但不经减数分裂而发生低频基因重组产生重组子的无性过程。分三阶段:(1)两体细胞融合形成异核体;(2)异核体中两个单倍体核发生核融合,形成二倍体核;(3)该二倍体核有丝分裂期间,发生同源染色单体片段的交换,形成二倍体重组核,或一再发生染色体不分离行为,导致每对同源染色体中一条逐步丢失,形成非整倍体或单倍体重组核。准性生殖存在于构巢曲霉(Aspergillus nidulans)等子囊菌(Ascomycetes)、某些半知菌(Deuteromycotina)和担子菌(Basidiomycotina)中。通过准性生殖可对不进行有性生殖的真菌作有丝分裂基因定位、连锁群判断等遗传学分析和进行重组育种。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条