说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 双线性配对函数
1)  bilinear pairings
双线性配对函数
1.
Due to the various applications of the bilinear pairings in cryptography, there have been many pairing-based signature schemes.
由于双线性配对函数表现出的良好密码学特性,目前已经引起了众多关注。
2)  symmetric bilinear function
对称双线性函数
1.
In this paper,the inertial theorem of real symmetric matrix has been proved by three methods in three aspects: the relationship between real symmetric matrix and real quadratic form,the relationship between real symmetric matrix and symmetric bilinear function of real linear space.
从实对称矩阵与实二次型的联系、实对称矩阵与实线性空间的对称双线性函数的联系以及将实对称矩阵作为研究主体这三个角度,介绍实对称矩阵的惯性定理的三种证明,以期加深对实对称矩阵的惯性定理的理解。
2.
In this paper, we use the theory of symmetric bilinear function to solve problems of quadratic form, and finally give a proof of the inertia theorem.
通过建立二次型与对称双线性函数之间的对应关系 ,在双线性函数的概念下讨论二次型化标准型的问题 ,最后给出惯性定理的一个证明。
3.
Utilization symmetric bilinear function gave a good few sufficient conditions for transformation of Euclidean space to be linear.
利用对称双线性函数给出了向量空间的变换为线性变换的一系列充分条件,进而导出了欧氏空间的变换为正交变换、对称变换、反对称变换、共轭变换的一系列判别条件。
3)  symmetric bilinear functions
对称双线性函数
1.
We have got the classification for all the n-dimensional Lie triple systems through the use of the standard form of the symmetric bilinear functions,i.
主要讨论了复数域上一类n维李三系的分类,设T是一个带有三元运算[x,y,z]=f(y,z)x-f(x,z)y的n维李三系,其中f是T上的对称双线性函数,利用对称双线性函数的标准型,得到所有此类n维李三系的分类,即可分为n+1类。
4)  Real symmetric bilinear function
实对称双线性函数
5)  secondary symmetric bilinear function
次对称双线性函数
6)  bilinear pairings
双线性配对
1.
Cryptanalysis of Proxy Multi-signature,Multi-proxy Signature and Multi-proxy Multi-signature Schemes from Bilinear Pairings;
对来自双线性配对的三种代理签名体制的密码学分析
2.
Combining multi-proxy signature with blind signature,a multi-proxy blind signature scheme from bilinear pairings is proposed,which is secure and efficient.
结合多代理签名和盲签名,基于双线性配对首先设计了一个安全有效的多代理盲签名方案。
3.
This paper proposes three new types of proxy signature schemes that deal with multiple signers from bilinear pairings.
作者提出三类新的来自双线性配对的涉及多个签名人的代理签名体制 。
补充资料:函数逼近,线性方法


函数逼近,线性方法
pproximation of functions, Mnear methods

  函数通近,线性方法【即pro劝ma柱佣of如口比此,Unearmethds;即面.橄...中伸叫浦月.州白.eM曰’O周曰!甲的-习..‘。侧.1由线性算子所定义的逼近方法.如果在赋范线性空间X中将线性流形(线性子空间)选作逼近集,则任何将函数f任X变换成函数U汀,t)=(Uf)(t)‘灾且满足’一U(。:f,+。2f2,r)=。IU汀,,t)+aZU价,r)(其中“1和气为任意数)的线性算子U均定义了灾中函数对X中函数的一种线性逼近方法(1i ncar approxi-mation method).一个线性逼近方法称为是射影的(P rojeCtive)如果对所有fe贝,U以t)=f(O;称为是正的(户犯itive),如果对非负函数f有U(f,r))0. 最有意思的是有限维数的情形.此时,若贝二贝、是N维子空间,则有 八 U以‘)=饰以,)=艺e*汀)叭(,),(1) k二1其中{叭(t)}犷是灾、的基底,吼为定义在X上的线性泛函.线性无关系{叭(t)}犷和泛函集{q}仁的选取依赖于构造线性方法时所用函数的有关信息.如果几们二了仇)(这里{气片是f的定义域中的固定点组玉且叭(t.卜0,(i笋k),叭(tk)=1,则U从工气)=f(t*)伍=1,…,扔,此时得到一种插值方法(interpolation method)(如,Lag-ran罗插值多项式或播值样条(interpolation spline)).如果X=H是托lbert空间,吼汀)为函数f关于标准正交系{叭(t)}的Fourier系数,则(1)的右端的和式导致了X到贝N上的正交投影线性方法(li near methodoforthogonal Projection);此时, ,,介饰汀,”一萝…卜詹:一……。因此,可用函数叭的线性组合对f作最佳逼近. 线性逼近方法的理论中最引人注目的是收敛问题.令x为一Banach空间,{甲:(t),中2(t),…}是X上某个线性无关函数系,令灾N为这个系的前N(N=1,2,…个元素形成的子空间,叽为X到贝八N二1,2,…上的有界线性算子.对任何f‘X,收敛关系式珠以O~f(t)(在11叽一fllx~0(N~的)的意义下)成立,当且仅当:l)U、的范数列11叭}}有界,见B田.山-Stei曲aus定理(Banach一Steinhaus theorem):2)对于X中处处稠密的集合A上的所有函数f有认以t)一f(O.特别地,在周期为27r的函数空间乌=乌[0,2司(l  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条