说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正定双线性函数
1)  positive definite double linear function basis
正定双线性函数
1.
In this paper,We give concepts of orthogonal double linear function basis and positive definite double linear function basis,and show that (1) every double linear function can be lineally expressed by orthogonal double linear function basis;(2) every symmetric double linear function can be lineally expressed by positive definite double linear function basis.
给出了正交双线性函数基与正定双线性函数基;证明了:(1)每个双线性函数均可由正交双线性函数基惟一线性表出;(2)每个对称双线性函数均可由正定双线性函数基惟一线性表出。
2)  metapositive bilinear function
次正定双线性函数
3)  orthogonal double linear function basis
正交双线性函数
1.
In this paper,We give concepts of orthogonal double linear function basis and positive definite double linear function basis,and show that (1) every double linear function can be lineally expressed by orthogonal double linear function basis;(2) every symmetric double linear function can be lineally expressed by positive definite double linear function basis.
给出了正交双线性函数基与正定双线性函数基;证明了:(1)每个双线性函数均可由正交双线性函数基惟一线性表出;(2)每个对称双线性函数均可由正定双线性函数基惟一线性表出。
4)  hyperbolic tangent non-line function
双曲正切非线性函数
5)  bilinear function
双线性函数
1.
In this paper,we firstly characterize the form of transformation T which preserves both minimal rank and a nonsingular bilinear function from Mn(F) to itself when n≥3.
文中首先刻画n≥3时,Mn(F)到其自身的同时保持极小秩和某一非奇异双线性函数的变换T的形式,然后证明M2(F)到其自身的保持极小秩的线性变换的形式。
2.
In this paper,two kinds of bilinear functions have been mainly discussed,and symplectic space been only simple introduced.
该文旨在阐述二类双线性函数的联系、区别,并初步介绍了辛空间的概念。
3.
The paper studies character of transform in vector space with the aid of bilinear function.
本文借助双线性函数来研究向量空间的变换具有线性性。
6)  symmetric bilinear function
对称双线性函数
1.
In this paper,the inertial theorem of real symmetric matrix has been proved by three methods in three aspects: the relationship between real symmetric matrix and real quadratic form,the relationship between real symmetric matrix and symmetric bilinear function of real linear space.
从实对称矩阵与实二次型的联系、实对称矩阵与实线性空间的对称双线性函数的联系以及将实对称矩阵作为研究主体这三个角度,介绍实对称矩阵的惯性定理的三种证明,以期加深对实对称矩阵的惯性定理的理解。
2.
In this paper, we use the theory of symmetric bilinear function to solve problems of quadratic form, and finally give a proof of the inertia theorem.
通过建立二次型与对称双线性函数之间的对应关系 ,在双线性函数的概念下讨论二次型化标准型的问题 ,最后给出惯性定理的一个证明。
3.
Utilization symmetric bilinear function gave a good few sufficient conditions for transformation of Euclidean space to be linear.
利用对称双线性函数给出了向量空间的变换为线性变换的一系列充分条件,进而导出了欧氏空间的变换为正交变换、对称变换、反对称变换、共轭变换的一系列判别条件。
补充资料:正定函数
      指实轴R上定义的满足如下条件的连续函数??:这里"正定"名称来源于正定矩阵。事实上,式(1)等价于说,对一切n与一切点列,复数矩阵是一个正定矩阵(严格地说是半正定矩阵)。
  
  正定函数概念的提出晚于它的一个同类,即所谓正定序列。O.特普利茨于20世纪初首先定义了正定序列的概念,即它是使矩阵正定的序列。G.赫格洛茨随后发现了正定序列的一个非常重要的性质。正是在此基础上,S.博赫纳于30年代初得到了R上正定函数的重要性质,并第一个认识到了这个概念的重要性。他在这方面的重要贡献之一便是建立了类似赫格洛茨定理的下述结果:R上连续函数??(x)是正定的,当且仅当存在有界增函数φ(t),使
  
  
  
   (2)
  
  正定函数的概念可以允许下述推广。首先,函数??的定义域可以不必是R,而是任意的局部紧T2群G。正定函数的概念推广到这样的群上是直接的。也就是说,G上连续函数??称为是正定的(记其全体为p(G)),若
  
   (1)'在这样的推广下,正定序列与正定函数的概念便获得了统一:前者是整数群Z上的正定函数,后者是实轴群R上的正定函数。正定函数概念的第二个推广是函数 ??可以不必是连续的,而只要求是可测的(这里可测性是关于所在群G的哈尔测度)。正如 F.(F.)里斯、I.E.西格尔与J.冯·诺伊曼等先后指出的,这样的正定函数与连续的正定函数只相差一个局部零(即在任意紧集上都几乎处处为零)的正定函数。第三个推广是将式 (1)(或(1)')左边的和改为积分。仍以 R为例。R上波莱尔可测函数??称为正定的,如果对一切φ∈L1(R),总有??(x-y)φ(x)徰(y)∈L1(R×R),且
  
  (3)可以证明,式(3)意义下的正定函数与式(1)意义下的正定函数是几乎处处相等的。特别地,两种意义下连续的正定函数的集合是一样的。
  
  正定函数是一个在许多领域都会遇到并且很有用的概念。如概率论中随机变量的特征函数就是正定函数。特征函数比随机变量的分布函数更易于处理。P.莱维正是用正定函数作工具对独立随机变量和的中心极限定理进行了比较统一完整的处理。正定函数在泛函分析中也经常遇到。事实上连续正定函数与某种连续正泛函一一对应。以R情况为例,R上连续正定函数??与M(R)(R上有界波莱尔测度所构成的对合巴拿赫代数)上连续正泛函
   (4)是一一对应的。此外,正定函数在调和分析中的地位也十分突出。交换群上的调和分析中的许多基本事实的建立都得力于正定函数这个概念。例如,傅里叶逆转定理便叙述为式中∧表示傅里叶变换,∨表示傅里叶逆变换,弿表示G的对偶群。又如,普朗歇尔定理(它说,傅里叶变换是L2(G)到L2(弿)上的一个等距同构)的一个证明便利用了上述逆转定理以及如下事实式中*表示卷积,B(G)是p(G)生成的复线性空间。至于在非交换群上的调和分析中,由于正定函数与连续酉表示的密切关系,以及它比连续酉表示更具体,它的作用也显得越来越重要。此外,正定函数在复变函数、积分方程、微分方程的边值问题、信息论等领域也都十分有用。
  
  

参考书目
   E.Hewitt and K.A.Ross,abstract harmonic Analysis,Vol.2, 2nd ed., Springer-Verlag, Berlin,1970.
   J.Stewart, Positive Definite Functions and Generalizations, An Historical Survey,The Rocky Mountain Journal of Mathematics, Vol.6, pp.409~434, 1976.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条