1) cubic rational Bézier curve
三次有理Bézier曲线
1.
Fairing extending of cubic rational Bézier curve;
三次有理Bézier曲线的光顺延拓
2) quadric rational Bézier curve
二次有理Bézier曲线
1.
An efficient extending algorithm for quadric rational Bézier curve
一种二次有理Bézier曲线延拓的有效算法
2.
A sufficient and essential condition,which the quadric C-curve and the quadric rational Bézier curve represent a same quadric curve,is obtained if the control points of the quadric C-curve are the same as the ones of the quadric rational Bézier curve.
给出具有相同控制顶点的二次C-曲线与二次有理Bézier曲线表示同一参数曲线段的充要条件,由此得到了二次C-曲线不能精确表示双曲线段的结论;另外,还给出了二次C-曲线在任意一点的细分公式。
3) quartic rational Bézier spline curve
有理四次Bézier曲线
1.
In this paper,pass weight but is not control point modify have already managed quartic rational Bézier spline curve,carries out G2 continuity for the joining between two adjacent rational quartic Bézier curve;carries out further G2 continuity for the joining between three adjacent rational quartic Bézier curve.
给出了两段相邻的有理四次Bézier曲线G2连续的条件,提出了通过权因子而不是控制顶点来修改有理四次Bézier样条曲线的形状的方法,从而实现了相邻曲线段间的G2的连续拼接;进一步实现了相邻三段曲线间的G2的连续拼接。
4) cubic Bézier curve
三次Bézier曲线
1.
Class of cubic Bézier curve with two phape parameters;
一类带两个形状参数的三次Bézier曲线
2.
The curve inherits the most properties of cubic Bézier curve and the shape of Q-Bézier curve can be adjusted by alerting the two shape parameters when the control polygon is maintained.
Q-Bézier曲线不仅具有三次Bézier曲线的特征,而且在控制多边形保持不变的条件下,具有形状可调性和对控制多边形更好的逼近性。
3.
Firstly, a quintic PH-spline curve is used to approximate a cubic Bézier curve within a bound.
研究用C1连续的五次Pythagorean-Hodograph样条曲线逼近一给定的三次Bézier曲线,证明了这种逼近算法在常用误差测度下的收敛性。
5) cubic Bézier curves
三次Bézier曲线
1.
In CNC,it is often required to approximate cubic Bézier curves by arc splines with few arc segments as possible.
在数控加工领域,通常需要用尽量少段数的圆弧样条来逼近三次Bézier曲线。
6) rational bicubic Bézier patches
有理双三次Bézier曲面
1.
The blending surface consists of two rational bicubic Bézier patches.
提出一种二次曲面混合方法,混合曲面由2张有理双三次Bézier曲面片构成,它们之间保持G2连续,混合曲面与二次曲面间保持G1连续。
补充资料:三次曲线
三次曲线
cubic
三次曲线【aI肠‘K师拟} 三次平面曲线,即在(射影、仿射、Eudid)平面内齐次坐标*o,x,.xZ(分别在射影、仿射或DeS以rtes坐标系内)满足三次齐次方程 2 F(x)三一艺a。、*、,、、一o“‘/、二u、、二a、 抓J成I毛,的点的集合从线外一点向一条三次曲线所能作的切线条数称为三次曲线的类(dass of the cubic).圆锥曲线 石aF 、’注井-义二O 气旅”r称为点M厂卜。,、1,xZ)的圆锥(或第一)极线(“》nic(fi rst) polar);点M’本身称为极点直线 启aF );苦舟工,=0 州、ax,一’称为这个点关于一三次曲线的直(或第二)极线(rectilinear(s econ山卯扭r)如果极点M‘是一三次曲线上的点,则它的直极线在点M‘与三次曲线相切,也与M’的圆锥极线相切.二次曲线的H亡sse曲线(Hesslan ot acu-bjc)就是圆锥极线由两条直线组成的点的集合;’臼由方程 __,}a二F} H3三d·‘}试亩!二。所定义.一条三次曲线与它的卜贻sse曲线交于9个公共拐点.F贻sse曲线上点的圆锥极线分裂成的直线以及连接卜贻sse曲线上对应点的直线构成了一条第三类的六次曲线的包络一手水申毕的Cavley申毕(C ayleyanof thecubic).在通过给定三次曲线的9个拐点的平面上三次曲线的集合构成一个合冲线束(syzy罗tic pen-斑),它包含线束内所有曲线的Hesse曲线以及各分裂成三条直线,构成一个章冲手角形(s yzygrti“triangie)的四条曲线.拐点M产的圆锥极线分裂成两条直线:三次曲线在M‘的切线以及M‘的调和极线(harmonicpo-far)—相对于过M‘的割线与三次曲线相交的二个点,调和共扼于M产的点的集合.三个共线拐点的调和极线相交于一个点.三次曲线有许多射影、仿射与度量分类:按照典范方程的类型;按照三次曲线的奇点类型;按照渐近线的性状等. Eudid平面上最著名的三次曲线有:Descartes叶形线(x3+犷一3axy=0);Aglesi箕舌线(y(aZ+xZ)=a’):三次抛物线。二ax3):半立方抛物线。2=ax,):环索线(y,伍一x)=xZ伪+x));niocles蔓叶线(y,(Za一x)=x3):三等分角线(x(xZ+夕2)=a(3x2一夕2)):以及sluze蚌线(a(X一a)(x’+犷)=k’x,).在代数j’’L何学中,cubic这个词既用于三次超曲面(cubic hypersurface),也用于三维三次曲线.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条