1) Bézier curve/rational Bézier curve
Bézier曲线/有理Bézier曲线
2) rational Bézier curves
有理Bézier曲线
1.
Some Methods for Shape Modification of Cubic Rational Bézier Curves;
三次有理Bézier曲线的形状调整方法
2.
Convergence of hybrid polynomial approximation of rational Bézier curves;
有理Bézier曲线hybrid逼近收敛性
3.
This paper gives the operator representation of rational Bézier curves′ derivatives,and the operator representation of the necessary and sufficient conditions of G1 and G2 continuous connexion between two adjacent random degree rational Bézier curves according to G1 and G2 continuous conditions.
文章给出了有理Bézier曲线各阶导矢的算子表示,并根据G1和G2连续条件,给出了两条邻接任意次有理Bézier曲线间G1和G2连续拼接充要条件的算子表示。
3) rational Bézier curve
有理Bézier曲线
1.
Approximating a kind of rational Bézier curves and their integral computation and derivatives using polynomial curves;
一类有理Bézier曲线及其求积求导的多项式逼近
2.
Simultaneous blending of arbitrary plane topology with the quadric rational Bézier curve;
用二次有理Bézier曲线同时磨光任意平面拓扑结构
3.
New way of approximating rational Bézier curve with polynomial curve
有理Bézier曲线的多项式逼近新方法
4) rational Bézier spline
有理Bézier样条曲线
1.
G~2 continuity conditions for assembling of two cubic rational Bézier spline curves;
三次有理Bézier样条曲线G~2光滑拼接条件
5) rational C-Bézier curve
有理C-Bézier曲线
1.
In this paper the authors analyze the shape features like singularities,inflection points and local or global convexity of rational C-Bézier curve,then give the necessary and sufficient conditions for this curve having one or two inflection points,or a loop,or a cusp,or being local or global convex in terms of the relative position of its control polygons′ side vectors.
对有理C-Bézier曲线进行了形状分析,得出曲线上含有奇点、拐点和曲线为局部凸或全局凸的、用控制多边形边向量相对位置表示的充分必要条件,并讨论了权因子变化对曲线形状图的影响。
6) cubic rational Bézier curve
三次有理Bézier曲线
1.
Fairing extending of cubic rational Bézier curve;
三次有理Bézier曲线的光顺延拓
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条