1) rational Bézier spline
有理Bézier样条曲线
1.
G~2 continuity conditions for assembling of two cubic rational Bézier spline curves;
三次有理Bézier样条曲线G~2光滑拼接条件
2) Bézier spline curves
Bézier样条曲线
1.
Improved approximate arc-length parameterization method for Bézier spline curves;
Bézier样条曲线改进的近似弧长参数化方法
3) rational Bézier curves
有理Bézier曲线
1.
Some Methods for Shape Modification of Cubic Rational Bézier Curves;
三次有理Bézier曲线的形状调整方法
2.
Convergence of hybrid polynomial approximation of rational Bézier curves;
有理Bézier曲线hybrid逼近收敛性
3.
This paper gives the operator representation of rational Bézier curves′ derivatives,and the operator representation of the necessary and sufficient conditions of G1 and G2 continuous connexion between two adjacent random degree rational Bézier curves according to G1 and G2 continuous conditions.
文章给出了有理Bézier曲线各阶导矢的算子表示,并根据G1和G2连续条件,给出了两条邻接任意次有理Bézier曲线间G1和G2连续拼接充要条件的算子表示。
4) rational Bézier curve
有理Bézier曲线
1.
Approximating a kind of rational Bézier curves and their integral computation and derivatives using polynomial curves;
一类有理Bézier曲线及其求积求导的多项式逼近
2.
Simultaneous blending of arbitrary plane topology with the quadric rational Bézier curve;
用二次有理Bézier曲线同时磨光任意平面拓扑结构
3.
New way of approximating rational Bézier curve with polynomial curve
有理Bézier曲线的多项式逼近新方法
5) quadratic Bézier spline curves
二次Bézier样条曲线
6) Bézier curve/rational Bézier curve
Bézier曲线/有理Bézier曲线
补充资料:B样条曲线
B样条曲线
B-spline curve
B yangtiQO qUxlanB样条曲线(BsPline curve)用B样条函数构造的曲线。B样条函数在19世纪初首先由N.肠bachevsky提出。1946年,1.J.段hoenbe唱用B样条函数光滑统计数据,并提出B样条近似理论。1972年,deB刀r,M.Cox,L.Mal侣field等人发现了B样条函数的递归关系,1974年,C心rdon和Ri~-feld用B样条的递归性质构造了B样条曲线。它除保持了决对er曲线的直观性和凸包性等优点之外,还可以进行局部修改,且曲线更逼近特征多边形。同时,曲线的阶次也与顶点数无关,因而更方便灵活。由于以上原因,B样条曲线得到越来越广泛的应用。 参照3戈ier曲线公式,已知n十1个控制点尸、(i二0,1,…,n)为特征多边形的顶点,K阶(K一1次)B样条曲线的表达式是:c(。)=艺尸八,*(。),其中从,*(u)是B样条调和函数,也称之为B样条基函数,按照递归公式可定义为:Ni,1(u)={‘若“镇“蕊‘、·‘(O其它(1)从,*(u)_(u一t,)从,;一1(u) t£+无--一t乞十业生丝卫些型己上:亘全些 t£+走一ti+1 t*一1镇u(t,+i其中t‘是节点值,T=「t。,tl,…,t:+2*]构成了K阶B样条函数的节点矢量,其中的节点是非减序列,且L二n一k+1。当节点沿参数轴作均匀等距分布(即t泛十1一t*二常数)时,则为均匀B样条函数。当节点沿参数轴的分布不等距时,即(t,+1一t,)护常数时,则表示非均匀B样条函数。 B样条曲线有如下性质: (1)局部性k阶B样条曲线只被相邻的K个顶点所控制,而与其它顶点无关。图1所示是一条均匀B样条曲线。由图可见尸5变化时只对其中一段曲线有影响。 (2)连续性B样条曲线在t、(k+1(i毛n)处公*1,4(u)=Nl,4(u)只+NZ,;(u)只十1+ N3,4(u)只+:+N4,4(u)只+3故第i段三次B样条曲线(见图2)可写成:C£·4(u)一置妈,4(u)只·厂2PI+: 图2对应的矩阵式是三次B样条曲线111,|||11|刘 一++(1/6)[u3 3一3一63 03 41从21飞阵0}…p‘0{{只田比u任[0,1],i=1,2,…,n一2有Q重节点的连续性不低于(k一Q一l)阶。整条曲线C(u)的连续性不低于(k一Q~一l)阶,其中Q~是在区间(红,t,十1)内的最大重节点数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条