1) regression estimation algorithm
回归估计算法
1.
Based on the normal support vector machine for regression estimation,an improved regression estimation algorithm of SVM is presented in this paper.
目前,如何设计快速有效的回归估计算法仍然是支持向量机实际应用中的问题之一。
2) VRE(Variable Regression Estimation)
变量回归估计算法
3) Regression estimate
回归估计
1.
A comparative study of systematic sampling and regression estimate for controlling total volume was conducted.
结果显示,回归估计可充分利用抽样调查与小班调查的综合信息,提高控制二类调查蓄积量的精度,提高成果质量。
2.
Through combining the advantages of field theory with adaptive resonance theory and contraposing the characteristics of regression estimate problem, a novel neural network regression estimate algorithm FTART3 is proposed in this paper.
结合自适应谐振理论和域理论的优点 ,针对回归估计问题的特性 ,提出了一种新型神经网络回归估计算法 FTART3。
3.
the principal component analysis and regression estimate.
采用主分量分析与回归估计相结合的方法,研究近35年来江苏沿海气温变化对北半球增暖的响应状况。
4) regression
[英][rɪ'ɡreʃn] [美][rɪ'grɛʃən]
回归估计
1.
The basic ideas of SVM for pattern recognition and regression are introduced.
基于统计学习理论的支持向量机(SVM)是一种新型的机器学习方法,描述了SVM在模式识别和回归估计中的基本思想。
2.
A support vector machine for regression is presented.
介绍机器学习的表示方式,分析和比较机器学习中经验风险最小化原则和结构风险最小化原则,引出用于回归估计的支持向量机,并用数学方式阐述其基本思想,讨论支持向量机技术发展中存在的主要问题。
3.
Support Vector Machine (SVM) for regression has recently attracted growing research interest due to its obvious advantage such as nonlinear function approximation with arbitrary accuracy, and good generalization ability, unique and globally optimal solutions.
用于回归估计的支持向量机方法以可控制的精度逼近非线性函数,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。
5) Regression estimator
回归估计
1.
We give the approximation formulas of the variance of the sample regression estimator for a population mean and its saymptotically non-biased estimator in mult-stage sampling.
讨论多阶段抽样回归估计及其样本量选择问题 。
2.
Some troubles emerge when we use regression estimator in such a case:in a continuous survey research,when the prior sample and the present sample are independent and they have different elements,we can not compute the regression coefficient.
作连续调查研究抽样时经常用到回归估计。
6) regression estimation
回归估计
1.
Fuzzy regression estimation based on support vector machine;
基于支持向量机的模糊回归估计
2.
The Bounds of a Kind of Regression Estimation Problem on Sugeno Measure Space
Sugeno测度空间上的一类回归估计问题的界
3.
On the basis of the normal support vector machine for regression estimation,a new learning algorithm is presented.
本文对用于回归估计的标准支持向量机加以改进,提出了一种新的用于回归估计的支持向量机学习算法,针对各样本重要性的差异,给各个样本的惩罚系数和误差要求赋予不同权重,并利用加权支持向量回归机的理论及其算法构建水质预测模型。
补充资料:递推估计算法
利用时刻t上的参数估计孌(t)、存储向量嗘(t)与时刻 t+1上测量的输入和输出值u(t+1)和y(t+1)计算新参数值孌(t+1),再根据孌(t+1)计算出新参数值孌(t+2),直到获得满意的参数值为止。这种算法的每一步计算量都比较小,能够使用小型计算机进行离线或在线参数估计,可以估计时变参数,也可以实时估计适应控制器的参数(见适应控制系统)。20世纪60年代,递推估计算法得到迅速发展,到了70年代产生了许多不同的方法,例如,有离线方法的各种变形、卡尔曼滤波法、随机逼近方法和模型参考适应参数递推估计法等。递推估计算法的各种方法可以用一个统一的公式来描述:
给孌(t),F(t),嫓(t)和w(t)不同的值就得到各种不同的方法:①递推最小二乘法;②递推增广最小二乘法;③递推近似极大似然法;④递推辅助变量法;⑤递推广义最小二乘法;⑥卡尔曼滤波参数估计;⑦随机逼近法;⑧模型参考适应法;⑨时变参数递推估计法。
参考书目
Lennart Ljung,Torsten Soderstrom, Theory and Practice of Recursive Identification,MIT Press., Combridge, Mass., 1983.
给孌(t),F(t),嫓(t)和w(t)不同的值就得到各种不同的方法:①递推最小二乘法;②递推增广最小二乘法;③递推近似极大似然法;④递推辅助变量法;⑤递推广义最小二乘法;⑥卡尔曼滤波参数估计;⑦随机逼近法;⑧模型参考适应法;⑨时变参数递推估计法。
参考书目
Lennart Ljung,Torsten Soderstrom, Theory and Practice of Recursive Identification,MIT Press., Combridge, Mass., 1983.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条