2) minimiza-tion method on frequency domain
频域极小化方法
3) constrained minimizing methods
约束极小化方法
1.
An existence theorem is obtained for infinitely distinct subharmonic solutions of a class of nonautonomous superquadratic homogeneous second order Hamiltonian systems by the constrained minimizing methods.
用约束极小化方法得到了一类非自治超二次齐次二阶Hamiltonian系统无穷多个不同的次调和解的存在性。
4) serial minimization method
序列极小化方法
1.
First serial minimization method is used to delete the characters which are independent on the outputs, correspondingly the data for these characters in primitive training samples is deleted and the classification function is recomputed.
在详细论述支持向量机的核心思想和基本算法的基础上,采用C-SVM算法用于未知样本分类,特别是对于缺失数据的未知样本,先采用序列极小化方法将与输出无关的特征剔除,对应地在原始训练集中剔除该特征所对应的数据并重新求解,否则采用插值法对缺失数据进行估计。
5) squared distance minimization(SDM)
平方距离极小化方法
1.
A C-C subdivision surface reconstruction algorithm with squared distance minimization(SDM) is given for complex triangle meshes of arbitrary topology with sharp features.
基于平方距离极小化方法(SDM),给出了用C-C细分曲面重构有特征的、任意拓扑三角网格模型的算法。
6) minimizing method
极小化法
补充资料:极小化方法(强依赖于多个变量的函数的)
极小化方法(强依赖于多个变量的函数的)
lion methods for functions depending strongly on a few variables
则数r称为函数J(x)在x‘G的谷维数(di~ionof the valley)(见[l」). 描述J(x)的下降轨道的微分方程组 d义 嚣一J’(x),‘(0)一‘。,(3)是一个刚性微分方程组(s叮山晚肥爪阁s势记m). 特别地,当J(x)是严格凸的且其He资℃矩阵是正定的(它的本征值是严格正的)时候,不等式(l)与熟知的场翔e矩阵的病态要求: n笼以」(x、 人{J‘IX))=—二戈>l rnln又八x)一致.在这情况下谱条件数与山谷的陡度相同. 坐标方式的下降法(coo攻垃扭te一~d留eent ITrth-ed)(见[ZJ)J(x:,*+:,“‘,x‘一,.*十,,x.,*+,,x‘+1.*,…,x。.*)一塑J(x,,*+:,‘”,x卜1,*,y,x‘+:,*,“’,xo.*), k=0,1,…,(4)不管其简单性和普遍性,仅当山谷的位置处于罕见情况下,即当山谷的方向是沿着坐标轴时才有效. 「2】中提出了方法(4)的一个现代化版本,它包括坐标轴的一个旋转,使得一个轴沿x*一x七一伸展,此后搜索在第(k+l)步开始.这样的一个办法导致一个坐标轴有一种与谷底的一条母线一致的趋向,使在若干情况下能顺利实现带有一维山谷的函数的极小化.这方法对多维山谷是不适用的. 最速下降法(s慨pest des以泊t,m出加吐of)的方案是由差分方程 x*十一x*一h*J{,J诬=J‘(x*)(5)给出的,这里h*由条件 J(‘*、:)一嘿J(‘厂hJ口选取.对严格凸的谷函数,特别对二次函数 J(x)一合X·DX一。·x,(6)由算法(5)构造的序列{x*}几何地收敛于函数的极小值点x’(见「3』): 1 Ix*一x‘11簇eg‘,这里C=常数且 。一典4共手共咎井. k(J"(x’))+l’由于对谷函数,k(J“(x))》1,q“1,从而收敛性在实际上是不存在的. 对简单梯度方案(见阱】);梯度法(脚曲ntme-thod)) x*十,=x*一hJ二,J*十1“J(x*、,),h=常数, (7)类似的情况也能看到.加速其收敛性的基础在于用以前迭代的结果使得谷底更精确.梯度法(7)能够同每一次迭代的比率q=}人}/{J*一」}的计算一起应用(见阱],【51).当它变得稳固地接近于常数值q=1时,按照表达式 h x二,=x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条