1) bernoulli equation
Bernoulli方程
1.
Application of the function transform method in solving Bernoulli equation;
函数变换法在求解Bernoulli方程中的应用
2.
Based on the Bernoulli equation,the distribution of nano-particles of nitride iron magnetic fluid under the horizontal magnetic fields was investigated.
根据Bernoulli方程研究氮化铁磁性液体的表观密度,将磁性液体置于由FD-FM-A磁天平的两个励磁线圈产生的磁场下进行实验研究。
3.
This paper systematically summarizes three me thods for Bernoulli equation.
文章系统总结了 Bernoulli方程的三种解法 。
2) Euler-Bernoulli equation
Euler-Bernoulli方程
1.
The initial value problems for a Boussinesq equation and a Euler-Bernoulli equation are established in the following Sobolev spaceFirstly, in this minus index Sobolev space, we prove the Sobolev multiplying lemma by using microlocal analysis.
在相同的Sobolev空间中,第三章研究了Euler-Bernoulli方程 u_(tt)+αu_(xxxx)+2bu_t+cu=f(u),t≥0,x∈[0,+∞)的初值问题。
3) Euler-Bernoulli beam equation
Euler-Bernoulli梁方程
1.
This paper discussed the initial-boundary problem of Euler-Bernoulli beam equation with memory.
讨论具记忆项的Euler-Bernoulli梁方程的初边值问题。
2.
A differential operator arisen from an Euler-Bernoulli beam equation under boundary shear force feedback control is studied.
讨论了一个在边界上有剪力反馈控制的Euler-Bernoulli梁方程,证明了其广义本征函数生成的根子空间在能量Hilbert空间中是完备的。
4) generalized Bernoulli equation
广义Bernoulli方程
5) Bernoulli differential equation
Bernoulli微分方程
1.
This paper first studies general solutions and integral factor of Bernoulli differential equation,then discusses two equations which can be transformed into Bernoulli differential equation,finally puts forward Bernoulli differential equation in integral equation and its application in mathematical model.
研究了Bernoulli微分方程的通解、积分因子,进而讨论了可化为Bernoulli方程的两类方程,并给了积分方程中的Bernoulli方程和它在数学建模中的应用。
6) Non-homogeneous Bernoulli Equations
非齐次Bernoulli方程
1.
The Integrability of Non-homogeneous Bernoulli Equations;
非齐次Bernoulli方程的可积性问题
补充资料:Bernoulli方程
Bernoulli方程
Bemoulli equation
取m叨肠方程【E短.目目Uequa柱皿;鞠叫胭y脚.,..1 一阶常微分方程 a。(x)y‘+a.(x沙=f(x沙“,其中“是不等于0或l的实数,这个方程首先是由J.Bernoulli研究的(〔l]).经代换尹一“二:,可将Bemoulli方程化为一阶线性非齐次方程(12】).如果“>0,则价moulli方程的解是y二O;如果0<“<1,则在某些点上,方程的解不再是单值的.考虑形如 tf妙)x+g妙)x“卜‘=h(y),a沪o,一的方程,如果把其中的y看成自变量,把x看成y的未知函数,则此方程也是Bemoulll方程.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条