1) Euler-Bernoulli viscoelastic equation
Euler-Bernoulli粘弹性方程
2) Euler-Bernoulli equation
Euler-Bernoulli方程
1.
The initial value problems for a Boussinesq equation and a Euler-Bernoulli equation are established in the following Sobolev spaceFirstly, in this minus index Sobolev space, we prove the Sobolev multiplying lemma by using microlocal analysis.
在相同的Sobolev空间中,第三章研究了Euler-Bernoulli方程 u_(tt)+αu_(xxxx)+2bu_t+cu=f(u),t≥0,x∈[0,+∞)的初值问题。
3) nonlinear Euler-Bernoulli equation
非线性Euler-Bernoulli方程
4) Euler-Bernoulli beam equation
Euler-Bernoulli梁方程
1.
This paper discussed the initial-boundary problem of Euler-Bernoulli beam equation with memory.
讨论具记忆项的Euler-Bernoulli梁方程的初边值问题。
2.
A differential operator arisen from an Euler-Bernoulli beam equation under boundary shear force feedback control is studied.
讨论了一个在边界上有剪力反馈控制的Euler-Bernoulli梁方程,证明了其广义本征函数生成的根子空间在能量Hilbert空间中是完备的。
5) vicoelastic equation
粘弹性方程
1.
This thesis is devoted to the problems of anisotropic finite elements convergence of vicoelastic equation and parabolic integro-differential equation and the error estimates of variable coefficient parabolic equation with anisotropic moving grids finite element methods mainly.
本文主要研究了各向异性网格下粘弹性方程和抛物型积分微分方程的收敛性问题以及各向异性网格下变系数抛物型方程变网格有限元法的误差阶估计问题,全文共由六章组成: 第一章主要对各向异性有限元的研究现状进行了概述,并将本文所做的工作进行了简单介绍。
2.
In this paper, the main contents are two class of nonconforming finite element methods with moving grids for vicoelastic equation.
本文主要讨论粘弹性方程的两类变网格非协调有限元方法的逼近问题。
3.
The Carey nonconforming triangle finite element approximation for vicoelastic equation with moving grid is studied.
主要研究了粘弹性方程的变网格非协调三角形有限元逼近。
6) viscoelasticity equation
粘弹性方程
1.
Superconvergence Analysis and Extrapolation of ACM Finite Element Methods for Viscoelasticity Equation
粘弹性方程ACM有限元的超收敛分析和外推(英文)
2.
In this paper,convergence analysis of the modified P1-nonconforming finite element for the viscoelasticity equation is discussed.
主要讨论粘弹性方程修正的P1-非协调元的收敛性。
3.
In this paper,the convergence analysis for the viscoelasticity equation with a new second order nonconforming finite element is discussed.
研究了粘弹性方程的一个新的二阶非协调元的收敛性,利用该单元的特殊性质,在不需要Ritz投影条件下给出了相应的误差估计。
补充资料:Bernoulli方程
Bernoulli方程
Bemoulli equation
取m叨肠方程【E短.目目Uequa柱皿;鞠叫胭y脚.,..1 一阶常微分方程 a。(x)y‘+a.(x沙=f(x沙“,其中“是不等于0或l的实数,这个方程首先是由J.Bernoulli研究的(〔l]).经代换尹一“二:,可将Bemoulli方程化为一阶线性非齐次方程(12】).如果“>0,则价moulli方程的解是y二O;如果0<“<1,则在某些点上,方程的解不再是单值的.考虑形如 tf妙)x+g妙)x“卜‘=h(y),a沪o,一的方程,如果把其中的y看成自变量,把x看成y的未知函数,则此方程也是Bemoulll方程.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条