说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Bernoulli数
1)  Bernoulli Number
Bernoulli数
1.
On A Group of Congruence of Bernoulli Number and Euler Number;
关于Bernoulli数与Euler数的一组同余式
2.
A recurrence formula of the coefficient of the sum of natural numbers power and the calculating formula of Bernoulli Number;
自然数幂和公式系数的递推公式和有关Bernoulli数的计算公式
3.
An identical formula describing the relationship betweenBernoulli number and Stirlings number of the second kind;
联系Bernoulli数和第二类Stirling数的一个恒等式
2)  Bernoulli numbers
Bernoulli数
1.
The relations between Bernoulli numbers of higher order and Euler numbers of higher order;
高阶Bernoulli数和高阶Euler数的关系
2.
An identical relation between Bernoulli numbers and Euler numbers;
关于Bernoulli数和Euler数的恒等式
3.
An Identical Equation Between Fibonacci Numbers and Bernoulli Numbers;
关于Fibonacci数与Bernoulli数的一个恒等式
3)  Bernoullis numbers
Bernoulli数
1.
Recursive method and general purpose formula on the sum of equal powers of M N expression and Bernoullis numbers are gained and the formula of S 38 (N)~S 40 (N) is given.
获得了等幂和M N表示与Bernoulli数的循环递推方法及其通解公式给出了S3 8(n)~S40 (n)的公式 。
4)  Apostol-Bernoulli numbers
Apostol-Bernoulli数
5)  higher order Bernoulli numbers
高阶Bernoulli数
1.
The author studied the power series expansion of the generating function of two types of higher order Bernoulli numbers by using their definitions and the definitions of the two types of Stirling numbers,S_1(n,k) and(S_2(n,k));and obtained some inherent relationships between the two types of higher Bernoulli nubers and the two types of Stirling numbers.
利用第一、二类高阶Bernoulli数和二类Stirling数S1(n,k),S2(n,k)的定义。
2.
In this paper,we give the calculated formulae of improper integrals of a class kind include higher order Bernoulli numbers and higher order Euler numbers.
给出了一类包含高阶Bernoulli数和高阶Euler数的积分计算公式。
6)  Bernoulli numbers of higher order
高阶Bernoulli数
1.
The relations between Bernoulli numbers of higher order and Euler numbers of higher order;
高阶Bernoulli数和高阶Euler数的关系
2.
In this paper, we prove two explicit formulas for degenerate Bernoulli numbers and polynomials of higher order, and obtain an identity involving Bernoulli numbers of higher order and Stirling numbers.
本文研究了高阶退化Bernoulli数和多项式的两个显明公式,得到了一个包含高阶Bernoulli数和Stirling数的恒等式,并推广了F。
补充资料:数不胜数
1.数也数不清。形容很多。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条