说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Marquardt迭代法
1)  Marquardt Iteration
Marquardt迭代法
1.
This article narrates the principle of non-linear regression, puts its emphasis on the introduction of Marquardt Iteration and Weighting Least Square,and presents a specitic paraneter estimation method and some problems which should be paid attation to,along with binary non-linear volume equation.
叙述了非线性回归的原理 ,着重介绍了Marquardt迭代法和加权最小二乘法 ,并结合二元非线性材积模型给出了具体的参数估计方法和应注意的问题。
2)  Levenberg-Marquardt iteration
Levenberg-Marquardt迭代
3)  Marquardt method
Marquardt法
1.
Marquardt method is selected to dissolve the model, and the process of iteration is fast and steady.
采用Marquardt法求解数学模型,收敛迅速,模型的解稳定。
2.
The shortcomings of the linearization Marquardt method were analyzed based on the principles of the array lateral sonde and fast forward calculations.
在介绍阵列侧向电极系工作原理及快速正演计算的基础上,通过计算分析了Marquardt法线性反演过于依赖初值及迭代反演速度慢的不足。
4)  Levenberg-Marquardt method
Levenberg-Marquardt算法
1.
The BP network predicting models of lead brass among superplastic tension temperature,initial strain rate and elongation,flow stress were established using the Levenberg-Marquardt method.
借助Levenberg-Marquardt算法,建立了铅黄铜超塑性拉伸温度、初始应变速率与延伸率、流动应力之间的BP网络预测模型,分析了拉伸温度、初始应变速率与延伸率和流动应力之间的关系,得出了铅黄铜最佳的超塑性条件,并以此为依据,进行了铜合金轴承保持架的超塑性成形试验。
2.
A new smoothing function is constructed for the objective function,and a globally convergent Levenberg-Marquardt method for solving the system of nonlinear inequalities is proposed based on its equivalent system of nonlinear equations.
文章研究了非线性不等式组的求解问题,利用等价转化把非线性不等式组转化为非线性方程组来加以求解,通过引进光滑参数构造了一个新的光滑函数来逼近方程组问题中的目标函数,利用构造的光滑函数给出了相应的求解非线性方程组的Levenberg-Marquardt算法,并在一定的条件下证明了该算法的整体收敛性。
5)  Marquardt method
Marquardt方法
6)  Marquardt algorithm
Marquardt算法
补充资料:策略迭代法
      动态规划中求最优策略的基本方法之一。它借助于动态规划基本方程,交替使用"求值计算"和"策略改进"两个步骤,求出逐次改进的、最终达到或收敛于最优策略的策略序列。
  
  例如,在最短路径问题中,设给定M个点1,2,...,M。点M是目的点,сij>0是点i到点j的距离i≠j,сij=0,i,j=1,2,...,M,要求出点i到点M的最短路。记??(i)为从i到M的最短路长度。此问题的动态规划基本方程为  
  (1)其策略迭代法的程序如下:选定一初始策略u0(i),在这问题中,策略u(i)的意义是从点i出发走一步后到达的点,而且作为策略,它是集{1,2,...,M-1}上的函数。由u0(i)解下列方程组求出相应的值函数??0(i):
  
  再由??0(i)求改进的一次迭代策略u1(i),使它是下列最小值问题的解:然后,再如前面一样,由u1(i)求出相应的值函数??1(i),并由??1(i)求得改进的二次迭代策略u2(i),如此继续下去。 可见求解(1)的策略迭代法的程序由下列两个基本步骤组成:
  
  ①求值计算 由策略 un(i)求相应的值函数??n(i),即求下列方程的解:
  
  
  
  
  ②策略改进 由值函数??n(i)求改进的策略,即求下列最小值问题的解:式中规定,如un(i)是上一问题的解,则取un+1(i)=un(i)。
  
  在一定条件下,由任选的初始策略出发,轮换进行这两个步骤, 经有限步N后将得出对所有i,uN+1(i)=uN(i)这样求得的uN(i)就是最优策略,相应的值函数??N(i)。是方程(1)的解。
  
  对于更一般形式的动态规划基本方程
  
   (2)这里??,H,φ为给定实函数。上述两个步骤变成:
  
  ①求值计算 由策略un(x)求相应的值函数 ??n(x),即求方程 之解,n=0,1,2...。
  
  ②策略改进 由值函数??n(x)求改进的策略un+1(x),即求最优值问题的解。
  
  对于满足适当条件的方程(2)和初始策略,上述两个步骤的解存在,并且在一定条件下,当n→ 时,所得序列{??n(x)}与{un(x)}在某种意义下分别收敛于(2)的解和最优策略。
  
  策略迭代法最初是由R.贝尔曼提出的。1960年,R.A.霍华德对于一种马尔可夫决策过程模型,提出了适用的策略迭代法,给出了相应的收敛性证明。后来,发现策略迭代法和牛顿迭代法在一定条件下的等价性,于是,从算子方程的牛顿逼近法的角度去研究策略迭代法,得到了发展。
  
  对于范围很广的一类马尔可夫决策过程,其动态规划基本方程可以写成;式中??∈V,对所有 γ∈Γ:r(γ)∈V,γ为 V→V的线性算子,Γ为这种算子的族,而V 则是由指标值函数所构造的函数空间。假设当 ??(γ)是方程 r(γ)+γ??=0 的解时, 它是对应于策略γ的指标值函数。最优策略 γ定义为最优值问题的解。这时由策略迭代法所求得的序列 {??n}和{γn}满足下列关系其中为 γn+1的逆算子。当σ是加托可微时, γn+1是σ在??n处的加托导数。于是,上面的关系恰好表达了牛顿迭代法在算子方程中的推广。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条