您的位置:
首页 ->
词典 -> Tchebycheff不等式
1) Tchebycheff's inequality
Tchebycheff不等式
2) Tchebycheff's integral inequality
Tchebycheff积分不等式
3) Tchebycheff polynomials
Tchebycheff多项式
1.
The weakly asymptoticly order for the average error of the Hermite-Fejer interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的Hermite-Fejer插值多项式在Wiener空间下的平均误差的弱渐进阶。
2.
The weakly asymptoticly order for the average error of the quasi-Hermite-Fejer interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的拟Hermite-Fejer插值多项式在Wiener空间下平均误差的弱渐近阶。
3.
The weakly asymptotic order for the average error of the Lagrange interpolation polynomials based on the zeros of Tchebycheff polynomials of the second kind in the Wiener space is obtained.
得到了以第二类Tchebycheff多项式的零点为插值结点组的Lagrange插值多项式在Wiener空间下的平均误差的弱渐近阶。
4) Tchebycheff Hermite multinomial
Tchebycheff-Hermite多项式
1.
This paper extends the Roll theorem and with the result, discusses the distribution of zero point in the Legender and Tchebycheff Hermite multinomials.
推广了Roll定理,并用该结果讨论了Legender多项式和Tchebycheff-Hermite多项式零点分布。
5) inequality
[英][,ɪnɪ'kwɔləti] [美]['ɪnɪ'kwɑlətɪ]
不等式;不等
6) isoperimetric inequality
等周不等式
1.
The
isoperimetric inequality on the Heisenberg group H~n;
关于Heisenberg群上的等周不等式
2.
We will derive the plane isoperimetric inequality and the Bonnesen s isoperi- metric inequality by the method of integral geometry.
将用积分几何方法给出平面等周不等式以及Bonnesen型不等式,平面区域D的面积、周长、最大内接园半径及最小外接园半径的一些几何不等式的简单证明。
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-
【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o
0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条