说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 芽期
1)  germinating stage
芽期
1.
Study on drought resistance and screening of the drought resistance assessment indexes at germinating stage of rice;
水稻种质芽期抗旱性和抗旱性鉴定指标的筛选研究
2.
Drought tolerance of indica/javanica recombinant inbred line at germinating stage in rice
水稻籼爪重组自交系群体芽期耐旱性鉴定
2)  periodic-buds
周期芽孢
1.
The topological relationship between the distribution of Misiurewicz points and that of M-set periodic-buds is thus given,with a recursion formula between them derived.
利用计算机数学试验的方法研究了M-J混沌分形图谱中的准周期点——Misiurewicz点的性质及分布规律,得到了Misiurewicz点和M集周期芽孢的拓扑分布关系,给出Misiurewicz点和M集周期芽孢之间的递推公式,为进一步揭示M集的图像内部结构特征以及其内部的周期点、准周期点的性质提供了一个有益的探讨。
3)  periodic bud
周期芽苞
1.
The distribution rules of main periodic buds in M set were found by lots of computer mathematic experiments and compared with the M set constructed by the typical complex mapping z←z~2+c, thus revealing the differences between them.
推广了由多项式函数族构造的M J混沌分形系统,研究了复映射z←sinz2+c所构造的广义M集和J集,利用逃逸时间算法绘制了M集和J集的混沌分形图·通过大量计算机数学实验,找到了M集各主要周期芽苞的分布规律,并与具有典型意义的复映射z←z2+c所构造的M集进行了对比分析,指出了两者之间的异同·发现了复映射z←sinz2+c的广义J集的非连通特殊性,分析了图谱构成及周期点位置,指出其具有无穷嵌套、自相似的分形结构·通过研究各周期芽苞内的点所对应的J集分形图,得出了广义M集周期芽苞内点的周期数与相应J集吸引周期轨道周期数相等的结论,并讨论了M集与J集之间的对应关系
4)  period bud
周期芽苞
1.
Topological invariance and the relation between period bud distribution and mapping orders were found through lots of computer-mathematics experiments.
通过计算机数学实验方法,对高阶复映射f:z←zn+c(n>2,n∈N)利用逃逸时间算法,构造一系列高阶Mandelbrot混沌分形图,从而发现其拓扑不变性以及周期芽苞分布与映射阶数之间的关系,并利用旋转对称性,改进了逃逸时间算法,提出了旋转逃逸时间算法·根据此算法利用面向WEB的JavaApplet绘制了高阶M集分形图,解决了复杂条件下混沌分形系统计算机模拟的时空复杂性,提供了一种基于Internet的分布式混沌分形理论研究机制
5)  periodic buds
周期芽苞
1.
Periodic numbers of stable area and the numbers and position of the periodic buds were got by solving algebraic equations.
研究了复映射z←zα+c(α <0 )所产生的广义Mandelbrot集 ,利用逃逸时间算法绘制广义M 集混沌分形图谱 ,经大量计算机数学实验 ,得知逃逸区嵌于稳定区中 ,并由此得出稳定区的周期数·同时利用代数方程解出周期芽苞的数量及位置 ,为更好的了解M 集的结构提供了理论依据·另外作者发现M 集周期芽苞的Fibonacci序列的拓扑不变性 ,并在目前公认的通向混沌的三种途径的基础上 ,阐述了Fibonacci序列是通向混沌的又一途径 ,为建立新的数据加密、压缩、存储等方法提供了理论基
2.
The topological invariance on the periodic buds fibonacci sequences in the general M-set are validated.
为更好的研究M-J混沌分形图谱的周期性,首先利用旋转逃逸时间算法绘制了正整数阶复映射的广义M-J混沌分形图谱,然后分析了广义Mandelbrot集(M-集)周期芽苞的分布规律,并验证了广义M-集周期芽苞存在Fi-bonacci序列拓扑不变性的规则;最后通过大量计算机数学实验,找出了M-集参数平面与动力平面上相应的Julia集图像结构之间的对应关系,同时给出了广义M-J集周期轨道的计算公式。
6)  sprout stage
芽苗期
1.
Salt tolerance and appraisement indices of cucumber in sprout stage and seedling stage;
黄瓜品种资源芽苗期和幼苗期耐盐性及其评价指标研究
2.
Salt tolerance and assessment of salt tolerance indices of tomato varieties in sprout stage and seedling stage
番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价
补充资料:欧洲式期权、美国式期权与亚洲式期权


欧洲式期权、美国式期权与亚洲式期权


  【欧洲式期权、美国式期权与亚洲式期权】期权合约所规定的权利有一定的时效期,过了失效日后,权利即行作废。一些期权规定权利仅能在有效期的最后一天执行,这种期权被称为欧洲式期权(ell功pean叩tions);另一些期权则容许在有效期内任何一天执行,这种期权被称为美国式期权(一~oPtions)。值得指出的是,虽名为欧洲式或美国式期权,但已无任何地理上的意义。由于欧洲式期权的规定过于严格,又出现了一种“改变的欧洲式期权”,它允许期权在一定的时间范围内进行交易。可见,美国式期权为期权购买者提供了更多的选择机会,因此,它的购买者也往往需支付更高的保险费。近年来无论在欧洲或美国,所交易的期权均以美国式为主,欧洲式期权虽仍存在,但其交易量已比不上美国式期权。 在so年代末期,市场上又出现了一种所谓亚洲式期权(asian ontions),但也无地理上的意义,其差别主要在于履约价值(exe而sev公此)的计算。以买权为例,无论是美国式期权或是欧洲式期权,执行权利所能得到的履约价值均为当时标的物的市价减去履约价格,再乘以合约所定的数量,但亚洲式期权的履约价值则为权利期间内标的物市价的平均(计算至履约日为止),减去履约价格,再乘以合约所定的数量。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条