1) Pseudo-E-Convex functions
伪-E-凸函数
2) E-Pseudo-convex function
E-伪凸函数
1.
Some properties of E-Pseudo-convex functions and the applications in mathematical programming;
E-伪凸函数性质及在数学规划中的应用
3) pseudo-semi-E-convex function
伪-半-E-凸函数
1.
Furthermore,this theorem is generalized to the case of pseudo-semi-E-convex function and quasi-semi-E-convex function and the extent of its usage is enlarged.
对文献[2]中定理12进行研究,并在此基础上得到了一个判断不动点为最优解的必要条件,而且把该定理推广到了拟-半-E-凸函数与伪-半-E-凸函数的情形,拓展了该定理的应用范围。
4) pseudo-semi Econvex function
伪半E-凸函数
5) strictly E-Pseudo-convex function
严格E-伪凸函数
1.
Two kinds of new generalized con- vexity functions,that is,E-Pseudo-convex function and strictly E-Pseudo-convex function,are introduced in this paper.
提出了两类新的广义凸函数:E-伪凸函数和严格E-伪凸函数。
6) pseudo-quasi-semi-E-convex function
伪-拟-E-凸函数
1.
Firstly,two kinds of new convex functions——pseudo-quasi-E-convex function and pseudo-quasi-semi-E-convex function are defined,and meanwhile,some properties and proof of two kinds of new convex functions are given.
定义了2种新的凸函数——伪-拟-E-凸函数及伪-拟-半-E-凸函数。
补充资料:凸函数
Image:11559688111252300.jpg
凸函数是一个定义在某个向量空间的凸子集c(区间)上的实值函数f
设f为定义在区间i上的函数,若对i上的任意两点x1,x2和任意的实数λ∈(0,1),总有
f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),
则f称为i上的凸函数.
判定方法可利用定义法、已知结论法以及函数的二阶导数
说明:补充资料仅用于学习参考,请勿用于其它任何用途。