说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 空间轨迹单元法
1)  space trajectory and unit method
空间轨迹单元法
1.
Proposed basic principle of the space trajectory and unit method and mathematics method of using the space trajectory and unit method to construct the wood fiber shape of the MLFB.
论述了空间轨迹单元法的基本原理,提出利用空间轨迹单元法来构建MLFB木纤维形态的数学方法,给出三种纤维形态的空间轨迹方程,提出基于OpenGL的数学仿真方法。
2)  trajectory unit
轨迹单元
1.
This paper proposes an index structure for moving objects′ trajectories, and gives out the definition of trajectory unit based on the changes of objects′ location, it also presents the trajectory units′ creating and indexing method based on the 3DR-tree structure, which is reasonable and has the least losing of the index′s spatial discriminability.
提出了一种处理对象运动轨迹的时空数据索引机制,根据轨迹中的位置变化的范围提出了轨迹单元的概念,并给出了基于3DR树结构的轨迹单元的划分和索引方法,在尽量保持索引的空间分辨能力的前提下实现对轨迹的合理划分。
3)  space track
空间轨迹
1.
In the airplane landing gear test,the sport of the landing gear is spatial,the dynamic state space track needs to be meas- ured,of which is the axle center and the point of intersection of shake arm and the pillar.
飞机起落架试验中,起落架的运动是空间的,起落架轮轴中心、摇臂与支柱交点的动态空间轨迹需要测定,介绍了一种利用线位移传感器布置初始参数坐标并跟踪测量测试点空间坐标的方法,试验结果说明此方法简捷、实用。
4)  trajectory space
轨迹空间
5)  Space tracking
相空间轨迹
6)  phase space trajectory
空间相轨迹
补充资料:根轨迹法
      利用根轨迹分析和设计闭环控制系统的图解方法。特征方程(见传递函数)的根随某个参数由零变到无穷大时在复数平面上形成的轨迹,称为根轨迹。在控制系统的分析中,对特征方程根的分布的研究,具有重要的意义。当特征方程的次数不高于2时,其根可用解析方法来简单地定出;但当特征方程的次数高于 2时,求根过程将变得相当复杂。美国学者W.R.埃文斯在1948年提出的根轨迹方法,为简化特征方程的求根过程提供了一种有效的手段。在把根轨迹技术应用于控制系统的分析时,常取系统的开环增益为可变参数,据此作出的根轨迹,表示闭环控制系统的极点在不同开环增益值下的分布。控制系统的极点在复数平面上的位置与系统的稳定性和过渡过程性能有密切的关系。根轨迹的建立,为分析控制系统在不同开环增益值时的行为提供了方便的途径。对于设计控制系统的校正装置(见控制系统校正方法),根轨迹法也是基本方法之一。根轨迹法和频率响应法被认为是构成经典控制理论的两大支柱。
  
  根轨迹条件  对于图1中的控制系统,用G(s)和H(s)分别表示系统前馈通道和反馈通道中部件的传递函数,并且当s=0时它们的值均为1,而K表示系统的开环增益,则控制系统的根轨迹条件可表示为:
  
  相角条件 开环传递函数KG(s)H(s)的相角值
  庺{KG(s)H(s)}=±1800(2k+1) (k=0,1,2,...)
  
  幅值条件 开环传递函数KG(s)H(s)的模
  │KG(s)H(s)│=1
  系统的根轨迹,就是当开环增益K由零变化到无穷大时,由满足相角条件和幅值条件的 s值在复数平面上所构成的一组轨迹。
  
  根轨迹绘制规则  在控制系统的分析和综合中,往往只需要知道根轨迹的粗略形状。由相角条件和幅值条件所导出的 8条规则,为粗略地绘制出根轨迹图提供方便的途径。
  
  ① 根轨迹的分支数等于开环传递函数极点的个数。
  
  ② 根轨迹的始点(相应于K=0)为开环传递函数的极点,根轨迹的终点(相应于K=∞)为开环传递函数的有穷零点或无穷远零点。
  
  ③ 根轨迹形状对称于坐标系的横轴(实轴)。
  
  ④ 实轴上的根轨迹按下述方法确定:将开环传递函数的位于实轴上的极点和零点由右至左顺序编号,由奇数点至偶数点间的线段为根轨迹。
  
  ⑤ 实轴上两个开环极点或两个开环零点间的根轨迹段上,至少存在一个分离点或会合点,根轨迹将在这些点产生分岔。
  
  ⑥ 在无穷远处根轨迹的走向可通过画出其渐近线来决定。渐近线的条数等于开环传递函数的极点数与零点数之差。
  
  ⑦ 根轨迹沿始点的走向由出射角决定,根轨迹到达终点的走向由入射角决定。
  
  ⑧ 根轨迹与虚轴(纵轴)的交点对分析系统的稳定性很重要,其位置和相应的K值可利用代数稳定判据来决定。
  
  图2是按照上述规则画出的一些典型的根轨迹图。
  
  根轨迹的精确化  在有些情况下,有必要对按基本规则画出的根轨迹的粗略形状,特别是位于虚轴附近的部分,进行修正,使之精确化。实现精确化的一条比较简便的途径,是采用一种由埃文斯设计的所谓对数螺旋尺的专用工具。
  
  根轨迹的计算机辅助制图  70年代以来,随着电子计算机的普及,利用计算机对根轨迹的辅助制图的算法和程序都已建立,这大大减轻了系统分析和设计人员的繁重工作。
  
  根轨迹的应用  根轨迹的应用主要有三个方面。
  
  ① 用于分析开环增益(或其他参数)值变化对系统行为的影响:在控制系统的极点中,离虚轴最近的一对孤立的共轭复数极点对系统的过渡过程行为具有主要影响,称为主导极点对。在根轨迹上,很容易看出开环增益不同取值时主导极点位置的变化情况,由此可估计出对系统行为的影响。
  
  ② 用于分析附加环节对控制系统性能的影响:为了某种目的常需要在控制系统中引入附加环节,这就相当于引入新的开环极点和开环零点。通过根轨迹便可估计出引入的附加环节对系统性能的影响。
  
  ③ 用于设计控制系统的校正装置:校正装置是为了改善控制系统性能而引入系统的附加环节,利用根轨迹可确定它的类型和参数设计。
  
  

参考书目 
   绪方胜彦著,卢伯英等译:《现代控制工程》,科学出版社,北京,1976。(Katsuhiko Ogata, Modern Control Engineering, Prentice-Hall,New York,1970.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条