说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 迷向Ricci曲率
1)  Ricci-isotropic curvature
迷向Ricci曲率
2)  Isotropic curvature
迷向曲率
3)  Ricci curvature
Ricci曲率
1.
A uniformation theorem on complete noncompactn-dimensional(m=2n) Khler manifold with nonnegative and bounded Ricci curvature is studied,if the conditoins as follow are satisfied:① section curvature kr(x0)≥-c/(1+r2);②‖f‖p≤ C0‖▽ f‖q,f∈C∞0(M),1≤q≤n,1/p=1/q-1/m;③ ∫_M Rnic<∞.
现得到完备非紧且Ricci曲率非负有界n维(m=2n)的Khler流形M上的一个单值化定理。
2.
Let M be an n(n≥3)-dimensional complete spacelike hypersurface in de Sitter space, S~n+11(1)with constant mean curvature H and constant scalar curvature, it also has nonegative Ricci curvature, then it is isometric to a sphere or an euclidean space or a hyperbolic cylinder.
设M为deSitter空间Sn+11(c)中的完备类空超曲面,具有常平均曲率向量和常数量曲率以及非负Ricci曲率,则它与球空间、欧氏空间或者双曲柱面等距。
3.
A property of certain harmonic maps of Ricci curvature which have positive low bound on compact Riemann manifolds,as well as the Eigenvalue estimation problem of harmonic maps are discussed,we get a condition that a harmonic maps is a totally geodesic map.
主要讨论Ricci曲率具有正下界的紧Rieman流形M上的调和映射 。
4)  bi-Ricci curvature
双Ricci曲率
1.
The paper shows that a complete, noncompact, oriented and strongly stable hypersurface M with constant mean curvature H in a (n+1)-dimensional complete oriented manifold N~(n+1) with bi-Ricci curvature,being not less than -n~2H~2 along M, admits no nontrivial L~2 harmonic 1-forms.
设M为(n+1)维流形N中完备、非紧、定向的、具有常平均曲率H的强稳定超曲面,文中证明了若N的双Ricci曲率沿M不小于-n2H2,则M上不存在非平凡的L2调和1-形式。
5)  Ricci principle curvature
Ricci主曲率
6)  isotropic Berwald curvature
迷向Berwald曲率
1.
In this paper, we discuss the relation of the isotropic Berwald curvature for pojectively related Finsler metrics F and F, the necessary and sufficient condition that F is of isotropic S-curvature is obtained from the above result.
讨论了射影相关Finsler度量F与F的迷向Berwald曲率间的关系 ,并利用这种关系得到了一个射影相关下F具有迷向S 曲率的充分必要条
补充资料:非迷向核


非迷向核
anisotropic kernel

非迷向核!咖即肋叩ic缺mel;a。“3oTpon。,,压pc门 定义在域k上的半单代数群(a辱braic group)G的子群D,它是极大k分裂环面SCG的中心化子的换位子群,即D=「Z。(S),Z。(S)〕.非迷向核D是定义在k上的半单非迷向群(anisotropic梦oup);ranko=以nkG一ran城G.非迷向核的概念在研究G的人结构中起重要作用“11).设D=G,即ran从G二O,则G在k上是非迷向的;如果D=(e),则群G称为在k上是拟分裂的(quasi一split).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条