1) point infinitely approaching 0-1 law
点无穷过0-1律
2) 0-1 law
0-1律
1.
In this paper,we first study the 0-1 law of Markov chain in random environmens,and then point out if we keep to the conservative set,we will have a similar conclusion to B-C lemma.
本文研究了随机环境中马氏链的0-1律,指出了若限制在保守集C上,将有与B-C引理相类似的一个结果,同时也给出了若单链■是π-不可约下的一个推论。
2.
0-1 laws for RWRE on regularplanar graphs.
6-正则平面图上的随机环境中的随机游走(RWRE)的0-1律。
3.
Moreover, for RWRE on 3-regular planar graphs with uniformly elliptic product random environments, the 0-1 law for it tending to infinity along a fixed direction or its inverse direction holds.
此外,对3-正则平面图上的一致椭圆乘积随机环境中的随机游走(RWRE),我们证明了其沿某固定方向或其反向趋于无穷远具有0-1律。
3) infinite particle Markov process
无穷质点马氏过程
4) infinity
[英][ɪn'fɪnəti] [美][ɪn'fɪnətɪ]
无穷远点
1.
A cubic polynomial system with six limit cycles at infinity;
一个在无穷远点分支出6个极限环的三次多项式系统
2.
Limit cycles of infinity in a quintic polynomial system;
一类五次多项式系统无穷远点的极限环(英文)
3.
Isochronous center conditions and limit cycles at infinity for a class of fifth systems;
一类五次多项式系统无穷远点等时中心条件与极限环分支
5) the infinity
无穷远点
1.
Singular point quantities and center conditions at the infinity for a class of cubic polynomial system;
一类3次多项式系统无穷远点的奇点量与中心条件
2.
This paper studied the center conditions at the equator for a class of cubic polynomial system with no singular point at the infinity.
研究了一类三次系统无穷远点的中心条件。
3.
Center conditions and bifurcation of limit cycles at the infinity for a class of quintic polynomial system were studied.
研究一类五次多项式系统无穷远点的中心条件与赤道极限环分支。
6) infinite point
无穷远点
1.
In this paper,some rules about infinite point of complex variable functions are discussed.
无穷远点既具有普通点的某些共性,更具有其独特的个性。
2.
From the research we can conclude that the plume of the infinite point to the conic is diameter,and they all pass the center.
根据既是共轭又互相垂直的直径对有心二次曲线(双曲线椭圆)进行建模研究,建立了有心二次曲线和类似建立了无心二次曲线(抛物线)主轴方程的模型,推证得知,任意无穷远点关于二次曲线的极线都是直径。
3.
Through transforming,some conclusions are given about decomposing index number at higher order isolated singular point and infinite point in this paper.
文章通过变换,得出关于孤立高次奇点及无穷远点指数分解结论。
补充资料:过律
1.违反规定。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条