说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 上三角形矩阵
1)  upper triangular matrix
上三角形矩阵
1.
The exchangeable necessary and sufficient condition is given for a class upper triangular matrixes,and out of it,we have got a simple method of obtaining inverse matrixes.
给出了一类上三角形矩阵可交换的充要条件 ,并由此得到了求其逆矩阵的一种简便方法 。
2.
Points out the following facts: any matrix can be adopted into an upper triangular matrix by similar transformation,and element on the diagonal is corresponding eigen-value,the eigen-values with the same value line together.
指出了以下事实:任何矩阵都可以通过相似变换化为上三角形矩阵,矩阵对角线上的元素就是相应的特征值,且相同的特征值排在一起;进一步通过相似变换可以把矩阵化为分块矩阵,其中每一个子矩阵都只与一个确定的特征值相联系。
2)  Upper Triangular Matrix
上三角矩阵
1.
Maps on 2×2 upper triangular matrix algebras preserving tripotence;
2×2上三角矩阵代数上保持立方幂等的单射(英文)
2.
Additive maps preserving the lattices of invariant subspaces on upper triangular matrix algebras
上三角矩阵代数上的保不变子空间格映射
3.
According to the sum of Sm(n) being a proposition of natural numbers,we study the recurrence formula of the sum of Sk(n)by S0(n),S1(n),…,Sk-1(n),and find an upper triangular matrix with combinations as its elements to express the recurrence formula.
对Sm(n)是关于自然数的命题,由S0(n),S1(n),…,Sk-1(n)的和式递推出Sk(n)的和式,找到一个以组合数为元素的上三角矩阵表示该递推关系。
3)  formal triangular
形式上三角矩阵环
1.
This paper researches derivations and automorphisms of the formal triangular matrix ring Tri(A,M,B) and obtains the structure form of the derivation and the automorphism by using the method of multiplication by identities.
本文研究了形式上三角矩阵环Tri(A,M,B)的导子和自同构,利用与单位元相乘的方法,获得了形式上三角矩阵环Tri(A,M,B)的导子和自同构的结构形式。
4)  standard upper triangular matrix
标准上三角形矩阵
5)  triangular matrices
三角形矩阵
6)  triangular matrix
三角形矩阵
1.
This article gives a Formula for finding inverse matrices of upper (down) triangular matrix.
本文给出了上(下)三角形矩阵的一个求逆公式。
2.
In this paper, we give the characteristic of the inverse of the reversible triangular matrix.
笔者对一些可逆矩阵的逆矩阵的特点进行了一番思考,从中发现了可逆的三角形矩阵其逆的一些特点。
补充资料:三角形矩阵


三角形矩阵
triangular matrix

  三角形矩阵「tr如曹山r matrix;Tpe卿二‘H.Mop,”a] 主对角线以下(或以上)的所有元素均为零的方阵(见矩阵(mat血)).在第一种情况下,该矩阵称为上三角形矩阵(叩per triangularn妞tr该),在第二种情况下,该矩阵称为丁手角攀手吟(fower‘r面gularmatrix).一个三角形矩阵的行列式等于它的对角线上所有元素的乘积.0.A.物aHoB。撰【补注】一个能使之成为三角形形式的矩阵称为可三角化矩阵(trlgol祖lizable Inatr认),见可三角化元(tri-gonaliZablee】ell祖nt). 任意秩为r的(nxn)矩阵A,如果它的前;个顺序的主子式均不为零,那么A可以表成一个下三角形矩阵B与一个上三角形矩阵C的乘积,(【AI」). 任一实矩阵A可以分解为形如A=QR,其中Q是正交矩阵,R是上三角形矩阵,称为QR分解(QR一deconl户粥ition),或者分解为形如A=QL,其中Q是正交的,L是下三角形的,称为QL分解(QL一decom详〕sltion).这样的分解在数值计算法中起重要作用,([A2」)、(【A3])(例如对于计算本征值). 如果A是非奇异的,且要求R的对角线上的元素均为正数,那么QR分解A=QR是唯一的,(【A3」),且由Gnml一Schmidt标准正交化过程给出,见正交化(ortllogonal龙ation);岩沉分解(Iwasawadecon1Position).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条