1) strong E-rectangular ideal semigroup
强E-矩形理想半群
2) E-rectangular periodic semigroup
E-矩形周期半群
3) E-rectangular seimigroup
E矩形性半群
4) leftE-rectangualr semigroup
左[右]E矩形性半群
5) strong E-inversive semigroup
强E-逆半群
1.
The conception of strong E-inversive semigroups has been given out in this paper.
给出了强E-逆半群的概念,证明了在强E-逆半群中Lallement引理是成立的,进一步证明了强E-逆E半群的同态像也是强E-逆E半群。
6) strong E-inversive E-semigroup
强E-逆E半群
1.
It is shown that the Lallement s lemma holds in strong E-inversive semigroups,and it is further proved that the homomorphic image of strong E-inversive E-semigroups is also E-inversive E-semigroups.
给出了强E-逆半群的概念,证明了在强E-逆半群中Lallement引理是成立的,进一步证明了强E-逆E半群的同态像也是强E-逆E半群。
补充资料:强连续半群
强连续半群
strongly-continuous son!-group
强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条