1) wave equations/infinite dimensional Hamiltonian system
波动方程/无穷维哈密顿系统
2) canonical equations of motion
哈密顿运动方程
4) Hamilton Equation
哈密顿方程
1.
In this paper, with the application of the Delauney variables, according to the Hamilton equations, the influence on the perturbation of a satellite exerted by the gravitational force of the earth through canonical transformation has been found out.
本文应用Delaunay变量,从理论力学的哈密顿方程出发,通过正则变换求解了地球引力摄动对卫星运动轨道的影响,导出卫星位置和速度随时间的变化关系。
2.
The paper introduces the theory and example counting a class of Hamilton equations by symplectic obvions schemes.
本文介绍了用辛显式格式计算一类哈密顿方程的理论及实例。
5) infinite dimensional dynamical system
无穷维动力系统
1.
The infinite dimensional dynamical systems governed by a class of nonlinear parabolic variational inequalities are considered.
对由一类非线性抛物型变分不等方程所描述的无穷维动力系统,给出了存在全局吸引子及弱近似惯性流形的充分条件。
6) hamiltonian system
哈密顿系统
1.
Hopf bifurcation based on a three-dimensional and time-dependent perturbation Hamiltonian system;
基于近哈密顿系统的Hopf分岔
2.
Some results of discrete Hamiltonian systems;
离散哈密顿系统的几个结论
3.
The same distribution of limit cycles in nine perturbed Hamiltonian systems;
9个扰动哈密顿系统的极限环分布(英文)