说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 向量极值
1)  vector extremum
向量极值
1.
The constraint vector extremum problem in real Banach space stated as max{f(x)|x∈D}(where f:X→Y and is discussed and the aItemative theorem is given for general-ized systems in the space.
讨论了Banach空间约束向量极值问题,给出了Banach空间择一性定理。
2.
In this paper, the necessary optimality conditions for vector extremum problems with equality constraint in product of Banach spaces are obtained by using a implicit function theorem in Banach spaces and a theorem of the alternative for subconvexlike vector-valued maps in ordered linear topological spaces.
本文利用Banach空间中的隐函数定理和序线性拓扑空间中对于次似凸向量值映射的择一定理,得出了乘积Banach空间中具有等式约束向量极值问题的若干最优性必要条件。
2)  Vector Extremal
向量极值
1.
Under linear space, but without any topological structures, the vector-valued Lagrangian saddle point theorem of vector extremal problems with set-to-set maps is studied.
给出了一类具有集列集映射的向量极值问题解的向量值Lagrange鞍点定
3)  vector extremum problem
向量极值问题
1.
Optimality condition is established for vector extremum problems with set constraint by applying the alternative theorem under generalized subconvexlike maps in ordered locally-convex Hausdorff spaces.
利用序局部凸Hausdorff空间中的广义次似凸映射下的择一定理,得出带集约束的向量极值问题的最优性条件。
2.
Some properties of these concepts are discussed, ε-Conjugate duality theorems of vector extremum problems are established.
在线性拓扑空间中引入ε-次微分和ε-共轭映射的概念,系统地讨论了它们的若干性质,建立了一般向量极值问题的ε-共轭对偶定理。
4)  vector extremum problems
向量极值问题
1.
Benson proper efficient solution for vector extremum problems is the most important aspect of optimization problems,and it has drawn lots of attention.
向量极值问题的Benson真有效解,是优化问题的一个最重要的方面,吸引了许多关注的目光。
2.
Finally, using the theorem, the optimali-ty conditions for the vector extremum problems with generalized equality and inequality constraints are obtained.
并利用此定理获得了带广义等式和不等式约束的向量极值问题的最优性条件。
5)  vector-valued maximal operators
向量值极大算子
6)  vector-valued H-L maximal function
向量值H-L极大函数
补充资料:Weierstrass条件(对变分极值的)


Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun

与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条