1) Space Collimation
空间准直
1.
Space Collimation Having an Effect on the Sinal-to-Noisc Ratio of Optical Heterodyne;
空间准直性对激光外差干涉信噪比的影响
2) space response function
准直器空间响应函数
1.
Methods: By using a perfect parallel-hole collimator model and a collimator model considering the splayed angle effect,this paper proposed a novel method which considers the space response function(SRF) calculating the system matrix and uses an improved Ray Tracing algorithm to perform attenuation correction.
结论:融入准直器空间响应函数的系统矩阵更为精确、贴近真实情况,能较好的抑制边界伪影,提高了重建图像的对比度和信噪比。
3) direct product space
直积空间
4) space line
空间直线
1.
If there are two space lines,how to get a third one that makes a diffrent angle with them? how to get the line by computer? The line may be a bridge,a pipe the method we present could help you design the best of the
就空间直线间的连接问题提出一种解法,给出相应数学计算模型和程序框图,讨论了有关问题,为这类工程应用提供了一种方案设计的新思路。
2.
This paper introduces extraction of line equation and line locus equation, by making use of arbitrariness of known point in the space line.
介绍了如何利用空间直线 x -xOX =y -yoY =z-zoZ 上已知点MO(xO,yO,zO)的任意性来求直线方程和直线的轨迹方
5) spatial line
空间直线
1.
Vectors expression of spatial line and its applications of solving the distance from point to spatial line
空间直线的向量表示及其在求点到空间直线距离的应用
2.
In this paper, an error entropy model for spatial linear positional uncertainty is constructed from the point of information entropy in the paper.
从信息熵的角度提出了三维空间直线的误差熵模型,该模型由以垂直直线的平面误差熵为半径的圆柱体和两端点的误差球组成,是一种完全确定的度量空间线元不确定性的模型。
6) Direct sum spaces
直和空间
1.
In this paper,we study the Friedrichs extension of the minimal operator of regular order differential operators in direct sum spaces by the basic theory of first-order systems of differential equation and their relationship to general n-th order quasi-differential expressions,and give the boundary conditions of Friedrichs extension.
应用一阶对称微分系统及相应的高阶微分方程的基本理论,讨论了正则型高阶微分算子的最小算子在直和空间上的Friedrichs扩张,给出Friedrichs扩张的边条件形式。
2.
In this paper we investigate the characterization of self-adjoint domains of symmetric differential operators with interior singular points in the direct sum spaces.
本文研究了具有内部奇异点的,即直和空间上的对称微分算子自共轭域的辛几何刻划问题。
补充资料:准Hilbert空间
准Hilbert空间
pre-Hilbert space
准到山加rt空间【p比俐田加rt凡翔ce;”pe皿r”J‘epTo助即此Tpa”cr助] 复或实数域上的向量空间(货ctor sPace)E,具有满足下列条件的标量积E xE~C,xx夕~(x,y): l)(x+y,z)=(x,:)+(y,:), (又x,y)=几(x,y),(y,x)二压了刃, x,夕,z‘E,兄‘C(R): 2)(x,x))0,x日E; 3)(x,x)”O,当且仅当x二0. 在准Hdbert空间上定义了范数IJ xJ}=(x,x)’‘2,准Hi」bert空间E关于这个范数的完全化是Hi场ert空间(附bert sPace).BM几oMoHocoB撰【补注】上述函数(x,夕)也称为内积(m幻er Pro-duct).如果它仅满足条件l)和2),则有时称为准内积(pre一~preduCI).因此,准Hilbert空间着俞也称为内积空间(~p代心uct space),而具有准内积的向量空间也称为准内积空间(ple一~p《心uctsPace). 如果(E,}}·}})是线性赋范空间,则它具有生成范数的内积,当(且仅当)范数满足平行四边形法则(par叨e1哗四111】aw): l}x+夕}{’+}}x·夕}卜2(}}x}}’+}}夕}}’)对于内积空间的描述,见【AI],第四章.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条