1) pseudo-Euclidean space
伪欧空间
2) pseudo-Euclidean space
伪欧氏空间
1.
The(k+1)-dimensional ruled surfaces in pseudo-Euclidean space are studied.
讨论伪欧氏空间中的直纹面。
2.
If x:M n→E m ν is an isometric immersion of a pseudo-Riemamian manifold into a pseudo-Euclidean space then the map x~=xx t (t denotes transpose) is called the quadric representation of M n.
设x :Mn →Emν 是伪黎曼流形到伪欧氏空间的等距浸入,x~= xxt(t 表示转置) 称为Mn 的二次表示。
3.
In this thesis the ruled surfaces in pseudo-Euclidean space and Euclidean space are studied.
本文研究伪欧氏空间和欧氏空间中的直纹面。
3) semi-Euclidean 4-space
四维伪欧氏空间
4) pseudo-Euclidean space
伪欧几里得空间
5) ABOUT PSEUDO-EUCLIDEAN SPACES
关于伪欧氏空间
6) bogus symplectic space
伪辛空间
1.
The forming of concept of bogus symplectic space is studied.
论述了伪辛空间概念的形成,深入阐述了其本质属性及分化、演变和扩张,揭示了伪辛空间与辛空间及欧氏空间的内在联系和区别。
2.
The essential property and developmental course of Euclidean space,symplectic space and bogus symplectic space are studied.
论述欧氏空间、辛空间、伪辛空间的本质属性及演变过程 。
3.
In this paper,we construct the concept of bogus symplectic space,discuss the motion of bogus symplectic space and discribe the property of the motion by showing the composition and manifestation form of the motion,the generation and decomposition of the matrix of motion.
给出伪辛空间的概念,论述伪辛空间中的运动。
补充资料:半伪Euclid空间
半伪Euclid空间
semi-pseudo-Euclidean space
半伪五”d记空间f胭I幼一碑”心一h凶山汾n习.Ce;n。刃-nce.月oe卿“月OBo nP0c甲明cTBO] 具有退化的不定度量的向量空间.半伪Euclid空间‘’‘,R:”’,一’定义为一个刀维空间,在其中给定了厂个数量积 (二,力“二艺气二味y’u,这里O=椒(、<俐l<一
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条