说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 连续状态系统
1)  continuous state systems
连续状态系统
1.
Hybrid dynamical system originated from the application of discrete event systems to supervising continuous state systems is discussed.
混合动态系统起因于离散事件系统用于监控连续状态系统的行为。
2)  continuous state
连续状态
1.
Denoising method of anisotropic diffusion based oncontinuous state wavelet threshold
基于连续状态小波阈值的各向异性扩散去噪方法
2.
In this paper,a class of strong limit theorem about the non-homogeneous Markov chain taking values inthe continuous state are obtained in virtue of the notion of likelihood ratio and martingale convergence theorem.
利用似然比的概念及鞅收敛定理,得到取值于连续状态非齐次马氏链的强极限定理。
3.
The reliability of the system which consists of continuous state components is discussed in this paper.
本文讨论了连续状态部件构成的系统的可靠性。
3)  continuous dynamic system
连续动态系统
4)  discontinuous dynamical systems
不连续动态系统
1.
However, the area of discontinuous dynamical systems (DDS) is still to be fully explored.
以二阶非线性数字滤波器为对象研究离散时间不连续动态系统,借助于动力学符号序列,发展了代数方法,并将结果应用于带有周期输入的二阶非线性数字滤波器的动力学分析和离散时间变结构控制系统的切换行为分析,系统地分析了周期切换行为,得到了更具一般性的结果,最后给出了针对一般离散时间分段线性系统的代数方法分析策略。
5)  fedback control system under discontinuous status
非连续状态反馈控制系统
6)  continuum trees
连续状态树
1.
The block diagrams and fault trees in binary case are extended to continuum system case> and the continuum block diagrams and continuum trees analysis methods are studied by means of typical structures.
利用定义的典型结构,将两状态系统方块图和故障树分析方法推广至连续状态情形,研究连续状态方块图和连续状态树分析方法。
补充资料:应力状态和应变状态
      构件在受力时将同时产生应力与应变。构件内的应力不仅与点的位置有关,而且与截面的方位有关,应力状态理论是研究指定点处的方位不同截面上的应力之间的关系。应变状态理论则研究指定点处的不同方向的应变之间的关系。应力状态理论是强度计算的基础,而应变状态理论是实验分析的基础。
  
  应力状态  如果已经确定了一点的三个相互垂直面上的应力,则该点处的应力状态即完全确定。因此在表达一点处的应力状态时,为方便起见,常将"点"视为边长为无穷小的正六面体,即所谓单元体,并且认为其各面上的应力均匀分布,平行面上的应力相等。单元体在最复杂的应力状态下的一般表达式如图1,诸面上共有9个应力分量。可以证明,无论一点处的应力状态如何复杂,最终都可用剪应力为零的三对相互垂直面上的正应力,即主应力表示。当三个正应力均不为零时,称该点处于三向应力状态。若只有两对面上的主应力不等于零,则称为二向应力状态或平面应力状态。若只有一对面上的主应力不为零,则称为单向应力状态。
  
  
  应力圆  是分析应力状态的图解法。在已知一点处相互垂直的待定截面上应力的情况下,通过应力圆可求得该点处其他截面上的应力。应力圆也称莫尔圆。图2b即为图2a所示平面应力状态下表示垂直于xx平面的面上之应力与x、x截面上已知应力间关系的应力圆。利用它可求得:①任意 α面上的应力;②"最大"和"最小"正应力;③"最大"和"最小"剪应力。由应力圆上代表"最大"和"最小"正应力的A、B点可知,这些正应力所在截面上的剪应力为零,因而"最大"和"最小"正应力也就是该点处的主应力。
  
  
  应变圆  也称应变莫尔圆,是分析应变状态的图解法,其原理与应力圆类似,但应变圆的纵坐标为负剪应变的一半,横坐标为线应变 ε。在已知一点处的线应变εx、εy与剪应变γxy时,即可作出应变圆,从而求得该点处主应变 ε1与ε2的大小及其方向。在实验分析的测试中常用各种形状的应变花测量(见材料力学实验)一点处三个方向的应变,例如用"直角"应变花可测得一点处的线应变ε、ε45°、ε90°。根据一点处三个方向的线应变也可利用应变圆求得该点处的主应变ε1与ε2
  
  广义胡克定律  当按材料在线弹性范围内工作时,一点处的应力状态与应变状态之间的关系由广义胡克定律表达。对于各向同性材料,弹性模量E、剪切弹性模量G、泊松比v均与方向无关,且线应变只与正应力σ有关,剪应变只与剪应力τ有关。三向应力状态下,各向同性材料的广义胡克定律为
  
  
  
  
  
  
  
  
  
  
  
  
   τxy=Gγxy
  
  
  
   τyz=Gγyz
  
  
  
   τzx=Gγzx平面应力状态(σz=0, τyz=0, γzx=0)下的广义胡克定律应用最为普遍
  
  
  
   单向应力状态下的胡克定律则为σ=Eε。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条