1) interior G algebra
内G-代数
2) loop algebra G~
Loop代数G
3) G-algebras
G-代数
1.
In this paper,we studied the relations between valuations and filters in some fuzzy logic algebras,such as MV-algebras,Π-algebras,G-algebras,R0-algebras,etc.
通过研究MV-代数、Π-代数、G-代数、R0-代数等模糊逻辑代数的赋值(从模糊逻辑代数L到单位区间[0,1]的同态)与滤子之间的关系,建立了MV-代数、Π-代数、G-代数、R0-代数等模糊逻辑代数的Loomis-Sikorski表现定理。
4) local G algebra
局部G代数
5) σ-G-C-algebra
σ-G-C*-代数
6) G-De Morgan algebra
G-De Morgan代数
1.
The G-homomorphisms and the G-congruences on a G-De Morgan algebra
G-De Morgan代数的G-同态与G-同余
补充资料:代数的代数
代数的代数
algebraic algebra
代数的代数【aigeb面c aigeb口;缸代6脚盼贬军粗,即;浦钾! 域F上幂结合代数洲特别地结合代数飞.其所有兀素都是代数的几素a任月称为代数的(al罗bral口,如果由“生成的子代数F!a]是有限维的或等价地、兀素a有系数在基域F中的零化多项式).代数A称为有界次代数的代数(al罗braie al罗bra of bounded de-gee)如果它是代数的月其元素的极小零化多项式的次数的集合是有界的.有界次代数的代数的子代数与同态象仍是有界次代数的代数 例:局部有限代数(特别地有限维代数)、诣零代数及不可数域仁有。J数雌一成兀集的结合除环.下面假定所涉及的代数均为结合的,代数的代数的J匆以由son根(J aoobson radl以l)是诣零理想本原代数的代数A同构于除环上向匿空间的线性变换的稠密代数,如果A还是有界次的,则A同构于除环1的矩阵环.有限域上没有非零幂零元的代数的代数(特别地,除环)是交换的.因此,有限除环是交换的.有界次代数的代数满足一个多项式恒等式、见Pl代数(P卜algebra).代数的Pl代数是局部有限的.如果基域是不可数的,则由代数的代数通过基域的扩张所得到的代数,及代数的代数的张量积,都是代数的代数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条