1) translalional_jointed robot
移动关节机器人
2) articulated mobile robot
关节式移动机器人
1.
Analyzed kinematics and dynamics of the obstacle negotiations for an articulated mobile robot a restriction condition to guarantee dynamic stability when it gets over the obstacles.
通过对关节式移动机器人越障过程运动学和动力学分析,得出控制移动机器人越障时保证动态稳定性的约束条件。
2.
It is then used to control the obstacle avoidance and negotiation for an articulated mobile robot.
提出了一种关节式移动机器人自主越障时的障碍识别方法 ,该方法利用模糊神经网络对障碍物进行识别 ,确定障碍的类型和特征 ,并以此来控制移动机器人越障和避障时的行进速度和摆臂的动作 ,开发了在未知环境中障碍物辨识的模糊神经网络系统 。
3.
Fuzzy logic based motion control approach was proposed, using sensor fusion for robot local location, aimed at the requirement of stability and safety for articulated mobile robot moving on slope.
本文针对关节式移动机器人在斜面上运动时稳定性和安全性的要求对其进行动力学分析 ,利用传感器融合技术对机器人进行局部定位 ,提出了它的基于模糊逻辑的控制策略 。
3) joint-wheeled mobile robot
关节轮式移动机器人
4) articulated-tracked mobile robot
关节履带式移动机器人
1.
The obstacle-negotiation processes of an articulated-tracked mobile robot were analyzed.
通过对关节履带式移动机器人越障过程的运动分析,基于履带车辆行驶力学分析及牛顿—欧拉方程,建立了机器人复合越障运动状态的动力学模型。
5) Pneumatic joint-robot
气动关节机器人
6) robot joint
机器人关节
1.
When robot moves, time-varying and nonlinear characteristic of the physical parameters of robot joint will be shown, so the dynamic model of the robot that is built at fix state can not describe dynamic characteristics of the robot under moving state.
当机器人处于运动状态时,机器人关节面物理参数会出现时变与非线性特性,依靠在固定位姿下建立起的机器人动力学模型无法描述机器人在运动状态下的动态特性,为此机器人关节面时变物理参数在线辨识方法的研究被提到日程上来。
补充资料:移动机器人
一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。
60年代后期,美国和苏联为完成月球探测计划,研制并应用了移动机器人。美国"探测者"3号,其操作器在地面的遥控下,完成了在月球上挖沟和执行其他任务。苏联的"登月者"20号在无人驾驶的情况下降落在月球表面,操作器在月球表面钻削岩石,并把土壤和岩石样品装进回收容器并送回地球。70年代初期,日本早稻田大学研制出具有仿人功能的两足步行机器人。为适应原子能利用和海洋开发的需要,极限作业机器人和水下机器人也发展较快。
移动机器人随其应用环境和移动方式的不同,研究内容也有很大差别。其共同的基本技术有传感器技术、移动技术、操作器、控制技术、人工智能等方面。它有相当于人的眼、耳、皮肤的视觉传感器、听觉传感器和触觉传感器。移动机构有轮式(如四轮式、两轮式、全方向式、履带式)、足式(如 6足、4足、2足)、混合式(用轮子和足)、特殊式(如吸附式、轨道式、蛇式)等类型。轮子适于平坦的路面,足式移动机构适于山岳地带和凹凸不平的环境。移动机器人的控制方式从遥控、监控向自治控制发展,综合应用机器视觉、问题求解、专家系统等人工智能等技术研制自治型移动机器人。
移动机器人除用于宇宙探测、海洋开发和原子能等领域外,在工厂自动化、建筑、采矿、排险、军事、服务、农业等方面也有广泛的应用前景。
60年代后期,美国和苏联为完成月球探测计划,研制并应用了移动机器人。美国"探测者"3号,其操作器在地面的遥控下,完成了在月球上挖沟和执行其他任务。苏联的"登月者"20号在无人驾驶的情况下降落在月球表面,操作器在月球表面钻削岩石,并把土壤和岩石样品装进回收容器并送回地球。70年代初期,日本早稻田大学研制出具有仿人功能的两足步行机器人。为适应原子能利用和海洋开发的需要,极限作业机器人和水下机器人也发展较快。
移动机器人随其应用环境和移动方式的不同,研究内容也有很大差别。其共同的基本技术有传感器技术、移动技术、操作器、控制技术、人工智能等方面。它有相当于人的眼、耳、皮肤的视觉传感器、听觉传感器和触觉传感器。移动机构有轮式(如四轮式、两轮式、全方向式、履带式)、足式(如 6足、4足、2足)、混合式(用轮子和足)、特殊式(如吸附式、轨道式、蛇式)等类型。轮子适于平坦的路面,足式移动机构适于山岳地带和凹凸不平的环境。移动机器人的控制方式从遥控、监控向自治控制发展,综合应用机器视觉、问题求解、专家系统等人工智能等技术研制自治型移动机器人。
移动机器人除用于宇宙探测、海洋开发和原子能等领域外,在工厂自动化、建筑、采矿、排险、军事、服务、农业等方面也有广泛的应用前景。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条