1) divisor function
约数函数
1.
Let d(n) and φ(n) denote the divisor function and Euler s function of n respectively.
对于正整数n,设d(n)、φ(n)分别是n的约数函数和Euler函数。
2.
In this paper, using some elementary methods, we discuss an arithmetic functional equation containing the divisor function, the sum of divisors and the Euler totient function, All even integer solutions of the equation are given, This result solves a problem concerning the generalized perfect numbers.
本文运用初等方法,讨论了一个含有约数函数、约数和函数与Euler函数的数论函数方程,给出了该方程的全部偶数解,并且解决了一个有关广义完全数的问题。
3.
For any positive integer n,let d(n),φ(n) and σ(n) denote the divisor function,Euler\'s totient function and the sum of distinct divisors of n respectively.
对于正整数n,设d(n),φ(n),σ(n)分别是n的约数函数、Euler函数和约数和函数。
2) constrained function
约束函数
1.
By analyzing the deforming process of conical cold forging, this paper finds out the object function and constrained functions and gets the optimum parameters of conical forging die by using optimization melhod.
通过对锥形冷锻件变形过程的分析,找出目标函数及约束函数,运用优化方法,得出了冷锻件锥形模的最佳参数。
3) constraint function
约束函数
1.
With terminal function of spring minimal quality,with optimization parameters of the wire diameter,the mean spring diameter and the number of active coils,and with constraint function of shear stress,maximum deflection and index ect.
以弹簧的重量最轻为优化设计目标函数,以弹簧丝直径、弹簧中径和有效工作圈数为优化参数,根据剪切强度要求、最大变形条件、旋绕比等为约束函数建立了优化设计的数学模型。
2.
Because there are many infeasible chromosomes,the genetic algorithm was mended to provide a constraint function for operating the infeasible chromosomes.
基于大量不满足刚体完全定位规则的非可行染色体存在,提出了适应最优装配操作选择的约束函数,为非可行染色体的进化提供了条件。
3.
In the basis of the characteristic of complex trusses, the constraint functions are separated into local constraints and global constraints, and a simple method for working constraint functions is p resented in this paper.
根据复杂杆系结构的特点,将约束函数分为局部约束和全局约束,提出了一种用于约束函数处理的简化方法。
4) restrained function
约束函数
1.
And sampling formulas of the expected aim, whole optimum aim F(x ) and restrained functions are given.
文中重点讨论了运动矩阵的建立,仿生手指的结构模拟与教学描述,给出了预期目标的采样式,总优化目标F(x)与约束函数g1(x)~g42(x)。
5) function constraint
函数约束
6) sum of divisors
约数和函数
1.
An equation on sum of divisors
关于约数和函数的一个方程
2.
In this paper, using some elementary methods, we discuss an arithmetic functional equation containing the divisor function, the sum of divisors and the Euler totient function, All even integer solutions of the equation are given, This result solves a problem concerning the generalized perfect numbers.
本文运用初等方法,讨论了一个含有约数函数、约数和函数与Euler函数的数论函数方程,给出了该方程的全部偶数解,并且解决了一个有关广义完全数的问题。
3.
For any positive integer n, let σ and (?)( n) be the sum of divisors and the Euler function of n respectively.
对于正整数n,设σ(n)、(?)(n)分别是n的约数和函数和Euler函数。
补充资料:约数
又称“因数”。见“倍数”(158页)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条