说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分岔隧道三维试验模型
1)  3-D test model of bifurcation tunnel
分岔隧道三维试验模型
2)  3D test model of large-scale bifurcation tunnel
大型分岔隧道三维试验模型
3)  bifurcation tunnel
分岔隧道
1.
A combined geomechanical model test system and its application in a bifurcation tunnel project;
组合式地质力学模型试验系统及其在分岔隧道工程中的应用
2.
Deformation monitoring of bifurcation tunnel and countermeasures of construction technologies;
分岔隧道变形监测与施工对策研究
3.
Based on the engineering background of the selected bifurcation tunnel,the monitoring way,dynamic behavior and controlling technology of blasting vibration wave induced by close-spaced tunnel excavation were studied for the bifurcation tunnel.
基于复线隧道施工爆破对既有隧道稳定性冲击问题,结合沪蓉线庙垭分岔隧道工程实例,研究了其小间距段施工爆破的振动监测方法、爆破动力特性及其减振控制技术。
4)  forked tunnel
分岔隧道
1.
Damage analysis and optimum research on construction process for forked tunnel under bias pressure
偏压分岔隧道施工过程损伤破坏分析与优化研究
2.
Taking Baziling forked tunnel for examplet,he whole construction process of the tunnel is simulated by geomechanical model test and elastoplastic damage finite element program respectively.
以八字岭分岔隧道为例,分别采用地质力学模型试验和弹塑性损伤有限元模拟分岔隧道的施工全过程,给出围岩关键点位移和应力随施工过程的变化曲线以及围岩损伤区和塑性区的分布,提出分岔隧道的施工过程的优化措施。
3.
The construction process of forked tunnel is very complex because tunnel transition includes double-arch section,small clear spacing section and middle wall transfer from reinforced concrete to rock.
分岔隧道连拱段至小净距段的过渡处,中墙由钢筋混凝土变为原岩,施工过程十分复杂。
5)  dichotomy tunnel
分岔隧道
1.
The excavating process of the dichotomy tunnel is simulated,by building a numerical model with ABAQUS software.
利用ABAQUS有限元程序,建立数值模型,模拟了分岔隧道不同洞段的开挖过程,分析了围岩变形与应力分布特点。
6)  3D model test
三维模型试验
补充资料:基于UG生成表驱动的零件三维参数化模型的研究
阐述了基于UG生成表驱动标准件模型库的方法和步骤,并以一个实例对如何建立参数化模型、确凿设计变量、给模型分配设计变量以及设置和编辑电子表进行了详细的论述。实践证明,利用此方法可以方便快捷建立零件的三维参数化模型库,实现零件的系列化设计,能大大提高设计效率。


    在制造工业中经常遇到形状相似,但大小并不完全相同的零件,比如系列化的产品零件等。对于这些零件的二维设计,目前已经比较成熟。但随着CAD/CAM技术的发展,产品的设计与制造有了新的思路,即从三维到二维的设计步骤,也就是首先要建立三维模型,然后自动生成二维的工程图纸,或者利用三维零件模型直接生成数控代码,实现无图纸加工,节约时间和成本。因此零件三维参数化模型的建立,就显得尤为重要,它将使产品的结构设计的系列化成为可能,并极大地缩短了结构设计周期,减少了由于零件的尺寸变化带给工程师的工作量。
 
    1、  建立表驱动零件模型库的原理


    在产品的系列化设计过程中,为了加快产品设计过程,减少重复性的劳动,应建立结构形状相同仅尺寸不同零件的三维模型库,如螺钉、螺栓、螺母、垫圈、密封件、润滑件和轴承等一些标准件。UG虽然提供了许多二次开发工具(如UG/Open GRIP、UG/Open API、UG/Open),但利用二次开发工具需要设计人员技术比较高,一般设计人员很难完成[1],利用UG提供的表驱动技术同样可以创建标准零件、通用零件以及产品系列化设计的三维模型库。


    建立三维参数化模型以后,通过设置设计变量和将设计变量分配给模型,然后创建一个含有这些变量的外部电子表,将电子表链接到当前模型中,因为电子表中的变量被当前图形文件的零件尺寸所引用,这个表就可以用来改变当前图形文件中的零件的尺寸,所以用户可通过控制外部电子表对零件进行修改,因此可避免由于设计变化而不得不修改大量模型参数所带来的损失,并且用一个模型就可表达多个同类结构的零件。


    2、  建立基于表驱动的零件三维参数化模型


    2.1 分析零件特征
    为了高效地创建表驱动零件,在设计前必须对该零件进行仔细的分析,首先要从整体上形成关于这个零件建模的大概思路,明确设计零件需要创建哪些特征以及创建这些特征的次序;同时还需要注意所要创建的各种特征的内在联系及其各自的特点,最后明确该零件需要几个参数进行驱动。


说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条