说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 等周问题
1)  isoperimetric problem
等周问题
1.
Variational method of the isoperimetric problem of functional of more than one functions;
含多个函数的泛函的等周问题的变分方法
2.
In this paper we prove that the Grushin ball is not the solution to the isoperimetric problem and then show that the Brunn-Minkowski inequality does not hold in the Grushin plane.
首先证明了Grushin球不是Grushin平面上等周问题的解,然后得到了Brunn-Minkowski不等式在Grushin平面上是不成立的。
3.
Using convex theory and extreme value of function,get a result about the perimeter bisection chord of a triangle on isoperimetric problem:Any bisection chord L of a triangle dissects the triangle into two parts,denote M L the one with larger area,S(M L) the area of M L,then there exists a chord L 0,which satisfies:S(M L 0)=max{S(M L):L is a perimeter bisection chord}.
利用凸集理论和函数极值 ,讨论了三角形周长平分弦关于等周问题的结果 :三角形的任一周长平分弦 L将其划分为 2部分 ,记 ML 为面积较大者 ,S( ML)为 ML 的面积 ,则必存在一弦 L0 ,使得 S( ML0 ) =max{ S( ML)∶ L为周长平分弦 } 。
2)  inverse isoperimetric problem
逆等周问题
3)  abstract isopermetric problem
抽象等周问题
1.
In this paper,we investigate the structure of locally fine points and its applications to the abstract isopermetric problem.
在本文中,我们主要研究了局部精细点的结构,并讨论了其对抽象等周问题的应用。
4)  generalized isoperimetric problem
广义等周问题
5)  classical isoperimetric problem
经典等周问题
6)  periodic problem
周期问题
补充资料:等周问题


等周问题
isoperimetric problem

等周问题【询户如面c脚曲抽11;那。叶p服e,”叨c幽3a八明a] 经典变分学中基本问题之一等周问题是求泛函 书2 ,。(,)一了f。(x,,,,‘)dx xI在形式为戈2 J‘(夕)一丁,,(x,,,,,)己:一。‘; x. f,:R%R”xR”~R,i=l,…,m的约束和一定的边界条件下的极小值. 当引进满足微分方程 全‘=f‘(x,y,y‘),i=l,…,m和边界条件 :*(x、)=0,z‘(xZ)=c‘,i”l,…,m的新变数z‘时,等周问题化成La乎翎理,问题(U名-mn罗problem).等周问题中最优性的必要条件与Lagran罗函数(La即an罗丘 mc石。n) L(X,夕,,‘,“。,一“。)一,氛“‘f‘(x,y,y‘)有关的变分学中最简单问题有同样的形式. “等周问题”的名称可追溯到下面的经典问题:在平面上所有具有给定周长的曲线中,求围成最大面积的一条曲线,【补注】如上所述,原始等周问题是求有最大面积和给定周长的几何图形的问题,即这问题是求函数y,(x),yZ(x),使得 X2 丁,.,;过二 笼.最小,且满足 笼: 丁丫(夕;),+(,;):、:一,, 戈.这里l是一给定常数.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条