说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 严格Lyapunov函数
1)  strict Lyapunov functions
严格Lyapunov函数
2)  non-strict control Lyapunov function
非严格控制Lyapunov函数
1.
Thirdly,the strict control Lyapunov function is replaced by non-strict control Lyapunov function in th.
针对这一问题本文提出了聚点条件来保证反馈控制器具有连续性,该条件直接对选择的控制Lyapunov函数进行检验,并且聚点条件还是必要的;文章将控制Lyapunov函数的严格不等式放宽为非严格的不等式,提出非严格控制Lyapunov函数,利用LaSalle定理得到:采用满足聚点条件的非严格控制Lyapunov函数来设计连续反馈控制器,非线性仿射控制系统是全局渐进稳定,扩大了控制Lyapunov函数的寻找范围:最后通过对一种带摩擦的弹簧系统进行验证。
3)  strict function
严格函数
4)  strictly concave function
严格凹函数
1.
The new measures were derived by replacing the Shannon entropy function in mutual information with any strictly concave function,which were named mutual strictly concave function measures(NM_i,i=1,2,…,6).
为了提高医学图像配准的运算速度和增大配准的稳定区域,提出用严格凹函数取代互信息中的香农熵函数的方法,形成了互严格凹函数测度(NMi,i=1,2,…,6)。
5)  strictly convex function
严格凸函数
1.
Some new characterizations of explicitly convex and strictly convex functionsare presented.
提出了显凸函数和严格凸函数的若干新特征,这些新特征是用函数的图象、上图象及其相对内部、相对边界、极点的性质与它们之间的关系来表述的。
2.
Theorem Suppose that λ,μ∈(0,1),λ+μ=1,f: R~+R~+ is a increasing,differential,strictly convex function and X is a Banach space.
给出了Banach空间一致凸的一个新的充要条件:设λ,μ∈(0,1),λ+μ=1,f:R+R+是单调递增且可微的严格凸函数,X是Banach空间,则X是一致凸的当且仅当对任意ε>0,存在δ>0,使得当‖x‖≤1,‖x-y‖≥ε时,有f(‖λx+μy‖)<λf(‖x‖)+μf(‖y‖)-
3.
Using the theory of topological degree,Altman theorem is extended by replacing the square function with the strictly convex function.
首先利用拓扑度理论推广了非线性泛函分析中的Altman定理,将其条件中的平方函数放宽为严格凸函数。
6)  Lyapunov function
Lyapunov函数
1.
Design of feedback controllers and simulation for control systems with nonsmooth Lyapunov function;
具有非光滑Lyapunov函数控制系统的反馈控制器设计及仿真
2.
Lyapunov function and controllability of nonlinear switched systems;
Lyapunov函数与非线性切换系统的能控性
3.
Decomposition of large-scale interval dynamic systems──method of weighted Lyapunov function;
区间动力大系统的分解──加权Lyapunov函数法
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条