说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Cramr-Rao下限
1)  Cramr Rao bound
Cramr-Rao下限
2)  Cramer-Rao lower bound
Cramer-Rao下限
3)  uniform Cramer-Rao lower bound
Cramer-Rao下限一致
4)  Cramér-Rao low bound(CRLB)
Cramér-Rao限
5)  Cramér-Rao bound
Cramér-Rao界限
6)  Cramer-Rao low bound
Cramer-Rao下界
1.
Firstly,the cost function of mean square error(MSE) is developed based on Cramer-Rao low bound by considering the influence of the noises on motion estimation.
首先,根据Cramer-Rao下界建立一个包含估计量噪声项的MSE惩罚函数。
补充资料:Rao-Cramér不等式


Rao-Cramér不等式
Rao - Cramer inequality

的估计量,并称b(口)为T的偏倚(b此).那么,在关于族{p(刘因}的一定正则性条件下,其中包括Fisher信息量(Fisber如fomn石on) ,。。)一〔「目旦竺卫工主生旦工〕’ L口口」不为。,Cranl三r‘Rao不等式(Crdl证r一Rao irl叫卿ity)为 。。.:一。}2)卫共华迸{、。2(。一(,) I(口)对于具有同一偏倚函数b(的的、未知参数口的一切估计量T,此不等式给出了均方误差〔。}T一川,的下界 特别地,如果T是口的无偏估计量(unbiasedestimator),即E。T=口,则由(l),得 DT一E“,T一。,‘)命·‘2,这样,在此情形下,C份威r一Rao不等式提供了参数口的无偏估计量T之方差的下界l/I(0).此外,C‘之-n记r一Rao不等式表明,相合估计量(。。打‘istent巴til拟-tor)的存在性,与当n一田时Fisher信息量I(川的无限增大有关.如果Cm耐r一R出〕不等式(2)对于某个无偏估计量T为等式,则在所有无偏估计的类中在最小平方风险意义下T是最优的.这样的估计量T称为有效估计量(efficie幻t estil斑ltor).例如,如果Xl,…,茂是独立随机变量,服从同一正态律N(口,l),则T二(Xl十二十X。)/n是未知均值0的有效估训量. 在一般情形下,式(2)中的等式成立,当且仅当{,(x{0)}是考攀分布毕(expollen石al fan宙y),即随机向量X的概率密度可以表示为 夕(x}口)二c(x)exp{“(日)毋(x)一“(口)},这时充分统计量T“毋(X)是其期望。’(0)/u’(刃的有效估计量.如果不存在有效估计量,则无偏估计量之方差的下界可以精确化,因为Cm诚r一Rao不等式给出的只是下界而不是下确界.例如,若X.,一,戈是独立随机变量,服从同一正态律N(a’‘3,l),则参数a的无偏估计量之方差的下界为 9 a4 . 18 aZ .6 nn一n而1 ga‘ I(a)n一般,若Craz记r·Rao不等式(2)达不到等式,则并不说明所得估计量不最优,因为它可能是唯一无偏估计量. 在向量参数情形下,Cm成r一Rao不等式有不同的推广,并且可以推广到估计此参数的函数的情形.恰好是在这些情形下,O劲1记r一Rao不等式中下界的精确化有重要作用. 不等式(l)独立地分别由M .F游比以,C .R .Ra。和H.Cra耐r得到.Rao一Cra械r不等式〔Rao一C例耐r旅甲曰灯;Pao一KPa-Mepa“ep姗He卿l,Crall云r一Rao不等式(C扭屈r一Rao角闪,五勿),F政het不等式(F政heti班视uality),信息不等式(山仍n刀ationi以祠班山ty). 数理统计中的不等式,在未知参数的估计问题中,它确立关于平方损失函数的风险的下界. 假设随机向量X之(X、,…,戈)取值于n维空间R”,其概率分布由密度p(x{6)决定,其中x=(x.,二,x。)丁,口‘OCR’.设统计量T=T(X)满足条件 E。T=日+b(日),其中b(因是可微函数.现用T作未知数值参数口
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条