说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半正规
1)  Semi-normal
半正规
1.
Some Theorems on Semi-normal Subgrorps;
关于半正规子群的几个定理
2.
By using the c-supplemented or semi-normal properties of minimal subgroups,we present several sufficient conditions for a finite group to be p-nilpotent,which generalize some known results on this topic.
利用极小子群的c-可补性或半正规性,得到有限群成为p-幂零的若干充分条件,推广了已知的几个结果。
3.
In this paper,some sufficient conditons for supersolvability of finite groups are given with the semi-normal properties of the minimal subgroups and Sylow subgroups.
本文利用极小子群及Sylow子群的“半正规”性得到有限群超可解的若干结果其中定理1统一地推广了文[1],[2],[4]中几个定理,定理2,3也使文[4]中一些结果得到进一步推广。
2)  semi-normality
半正规
1.
And if all Sylow subgroups of A and B are semi-normality in G,then G is supersolvable;if G is finite group,then N G,G/N is supersolvable;if all prime subgroups of N include in U(G),and all 22 steppes of circulation subgroup of N are semi-normality or C-normality in group G,then G is supersolvab.
利用某些半正规或 C-正规子群刻划有限群的结构 ,得到有限群超可解的若干充分条件 :设有限群 G =AB,其中 A≤ G,B≤ G。
2.
Some sufficient conditions of the supersoluability of G are obtained under some weaker hypotheses by using the concept of semi-normality and quasi-normality which generalize the known.
利用半正规和拟正规的概念,在较弱的条件下给出了群G超可解的一些充分条件。
3)  s-seminormal
S-半正规
1.
Finite Groups Whose Maximal Subgroups of Sylow Subgroups are s-seminormal;
Sylow子群的极大子群皆s-半正规的有限群(英文)
2.
On s-seminormal Subgroups of Finite Groups II;
关于有限群的s-半正规子群II(英文)
3.
On s-seminormal Subgroups of Finite Groups I;
关于有限群的s-半正规子群I(英文)
4)  S-seminormality
S-半正规
1.
Some sufficient conditions are obtained,using the relation between S-seminormality and pronormality of subgroups and weak left Engle element in a finite group.
进一步利用S-半正规、付正规与弱左Engle元之间的关系给出了幂零群的一些充分条件。
5)  semi-normal property
半正规性
6)  Weakly seminormal
弱半正规
补充资料:正规子半群


正规子半群
nonnal sub-semi-group

正规子半群[仪曰司劝一胭‘一,叫p;皿opM~aano压no几yrp”扭a],半群S的 满足下述条件的子半群H:对任意满足xy‘S的x,y任S‘(记号夕见正规复形(加m司印nlp嫉”和任意h任H,关系xhy〔H与x夕任H等价.5的一个子集是正规子半群,当且仅当在S到某个带单位元的半群(阴n刀一grouP)的满同态下,它是单位元的完全反象.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条