1) left seminormal band
左半正规带
1.
A left seminormal orthodox semigroup is an orthodox semigroup whose idempotents form a left seminormal band.
左半正规纯正半群是幂等元集形成左半正规带的纯正半群 。
2) left normal bands
左正规带
1.
By using P-subdirect product,rather than using induction and properties of the least right cancellative congruence on a left normal type A monoid,it is proved that P-subdirect product of right cancellative monoids and left normal bands that is a proper left normal type A monoid.
利用P-子直积以及左正规型A幺半群上的最小右可消同余的性质,证明了右可消幺半群和左正规带的P-子直积是一个真左正规型A幺半群;反之,真左正规型A幺半群可以分解成右可消幺半群和左正规带的P-子直积。
3) left seminoral band
左半正则带
4) left(right) normal band
左(右)正规带
1.
Shevrin posed an open problem in Reference[1]: are semigroups whose lattice of subsemigroups is complemental periodic? In this paper, it is proved that the openproblem has positive answers for inverse semigroups, rectangular groups and E-right(left) unitary regular semigroups with left(right) normal band.
本文进一步证明了对逆半群、矩形群及幕等元集是左(右)正规带的E─右(左)么正正则半群,使公开问题有了肯定的回答。
5) left quasi-normal band
左拟正规带
1.
The existence of a tensor product is proved in the left quasi-normal band category,and the relationship with the tensor product in the semi-group category is provided.
证明左拟正规带范畴中张量积的存在性,并证明了它与半群张量积的关系,同时给出半格在左拟正规带范畴中张量积与在半格范畴中张量积之间的关系。
6) left seminormal cryptogroup
左半正规密群
1.
The purpose of this paper is to give an identity of locally left regular orthocryptogroups and to prove that a completely regular semigroup is a left seminormal cryptogroup if and only if it is a locally left regular orthocryptogroup.
证明了一个完全正则半群是左半正规密群当且仅当它是局部左正则纯正密群。
补充资料:宽禁带半导体(见半导体的能带结构)
宽禁带半导体(见半导体的能带结构)
wide gap semiconductor
习一’平叼能带结构。‘J~正J“、二二,,Conauctor见半
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条