1) isoperimetric edge connectivity
等周边连通度
1.
The k th extra edge connectivity and the k th isoperimetric edge connectivity generalize the concept of edge connectivity of a graph ( k ≥1).
图的超常边连通度和等周边连通度都是图的通常边连通度概念的推广 。
2) the second isoperimetric connectivity
第二等周点连通度
1.
In this paper,we show that the second isoperimetric connectivity of strongly connected line digraphs with \$δ≥\$ equals its connectivity.
证明了最小度大于等于2的强连通有向线图的第二等周点连通度等于它的点连通度。
3) edge-connectivity
边连通度
1.
Connectivity and edge-connectivity of strong product graphs;
强乘积图的连通度和边连通度(英文)
2.
The some properties of vertex-connectivity and the edge-connectivity of a~m(G)have been studied in the note.
将广义梭a(G)的定义推广到m+1个同构图的情形,定义了图a~m(G),得到广义棱a~m(G)的点连通度和边连通度的几个性质。
3.
The restricted edge-connectivity λ′ of de Bruijn digraphs D_B(d,n) was studied.
证明了对有向de B ru ijn图DB(d,n),当d≥3,n≥3或d=2,n≥3或d≥3,n=2时,它的限制边连通度λ′(DB(d,n))=2d-2。
4) Edge connectivity
边连通度
1.
Let G be a connected graph of order n whose algebraic connectivity, vertex connectivity, and edge connectivity are α(G), κ(G), and λ(G), respectively.
n阶连通图G的代数连通度、点连通度和边连通度分别记作α(G) ,κ(G)和λ(G) 。
2.
We know that edge connectivity plays an importent role in the connectivity of graph.
我们知道,边连通度是反映图的连通性质的一个重要参数。
3.
For Moor-Shannon network models,the greater the k-restricted edge connectivity is,the better the reliability and fault-tolerance is.
在Moor-Shannon网络模型中,k限制边连通度较大的网络一般有较好的可靠性和容错性。
5) edge-edge connectivity
边边连通度
1.
The edge-edge connectivity of a graph is defined,and a class of quasi-regular graphs is proposed with a maximum edge-edge connectivity.
定义了图的边边连通度,设计了一类具有最大边边连通度的拟正则图。
6) l-edge-connectivity
l-边-连通度
1.
The l-edge-connectivity of Complete Bipartite Graph;
完全2-分图的l-边-连通度
2.
The l-edge-connectivity of the 3-regular Cayley graph;
3-正则Cayley图的l-边-连通度
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条