1) multiply perfect number
多重完全数
1.
If σ(n)=2n then n is said to be a perfect number and if σ(n)=kn(k≥3) then n is said to be a multiply perfect number.
若σ(n) =knk≥ 3,则称n为多重完全数 。
2) multiperfect number
多完全数
3) λ-fold complete multipartite graph
多重完全多部图
1.
G-design of λ-fold complete multipartite graph where G is three kinds of graphs with five points;
关于三类五点图的多重完全多部图设计
2.
The existence of G-design ofλ-fold complete multipartite graph is discussed where G is the 3-path and a stick necessary and sufficient conditions are given for the G-design ofλKn(t).
讨论了G为有一条悬边的三长路时,多重完全多部图的G-设计的存在性。
3.
Let λKn(g)be aλ-fold complete multipartite graph and G be a finite simple graph.A(λKn(g),G)-design is a partition of the edges ofλKn(g)into sub-graphs each of which is isomorphic to G.In this paper the existence of a G-design ofλKn (g)was discussed where G is the 4-cycle and a stick.Necessary and sufficient conditions were given for theλKn(g)-design
在此基础上讨论了G为有1条悬边4长圈时多重完全多部图的G-设计的存在性。
4) multi-fold perfect numbers
多重完美数
5) complete bipartite multigraph
完全二部多重图
1.
K1,pq - factorization of complete bipartite multigraphs;
完全二部多重图的K_1,pq-因子分解(英文)
2.
LetλK_(m,n) be a complete bipartite multigraph with two partite sets having m and n vertices, respectively.
λK_(m,n)是完全二部多重图,它的两个部分点集X和Y分别具有m和n个点。
补充资料:多重数
见多重产生。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条