1) k fold S-perfect number
k重S-完全数
1.
For a fixed positive integer k,if n satisfies f(n)=kn,then n is called a k fold S-perfect number.
对于正整数k,若n适合f(n)=kn,则称n是一个k重S-完全数。
2) k-divisor perfect number
k-约完全数
1.
In this paper we define k-divisor perfect number due to the notion of perfect number, namely a number that equals the sum of all its proper divisors which can be divided by k.
该文从完全数的定义出发,定义了k-约完全数,即一个等于它的能被正整数k整除的所有真因子之和的数,并得出了相关的公式、性质、定理,提出了所有的是k的倍数的真因子和及奇的真因子和大于或等于自身q倍的数,并给出了几个结论。
3) perfect k-power number
完全k方数
1.
The writer generalizes the notion of perfect k-power number from N to R~+,and by means of it obtains a very useful lemma out from which a series of propositions concerning the irrationals are drawn.
将完全k方数的概念由N推广到R~+,从而,得到一个很有用的引理,由之推出一系列有关无理数的命题。
4) multiply perfect number
多重完全数
1.
If σ(n)=2n then n is said to be a perfect number and if σ(n)=kn(k≥3) then n is said to be a multiply perfect number.
若σ(n) =knk≥ 3,则称n为多重完全数 。
5) Completely k-strong
完全k强
补充资料:完全平方数之差
相临两个完全平方数之差可以组成一个等差数列:1,3,5,7,9,11.....所以已知两完全平方数之差,就可求出任意两个完全平方数之差.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条