说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义次梯度
1)  generalized subgradient
广义次梯度
1.
Based on and[1] and [2],in this paper we further discuss the relation hetween generalized gradient and generalized subgradient.
本文在[1]、[2]的基础上进一步讨论了广义梯度与广义次梯度的关系,揭示了广义次梯度的线性性质,推广了它们在最优化中的应用。
2.
: A generalized subgradient for the Lipschitz function has been defined, and was applied in thenonsmooth optimization.
该文针对弱Lipschitz函数定义了一种广义次梯度,并将它成功地应用在非光滑最优化理论中。
3.
This paper shows that the notion of generalized subgradient of weak Lipschitz functions as defined by Zhang Yuzhong in his paper which appeared in this journal vol.
本文证明张玉忠同志在“弱Lipschitz函数、它的广义次梯度及其在优化中的应用”一文中定义的广义次梯度f(π),当n≥2时即为R ̄n,因此这种广义次梯度是没有多少应用价值的。
2)  generalized gradient
广义梯度
1.
Study of generalized gradient and its application in blind signal separation;
广义梯度及其在盲信号分离中应用的研究
2.
A newly generalized gradient and application to optimization problems;
一类广义梯度及其在最优化中的应用
3)  general gradient method
广义梯度法
1.
An optimal algorithm model for the electrical plug design is put forward according to the general gradient method,which is used to settle the multi-variable and non-lin- ear problems.
根据电扣机设计的两类问题和广义梯度法解决多变量、非线性约束问题的一般方法,提出了扣机电磁铁主要设计参数的优化算法。
4)  general negative gradient
广义负梯度
1.
The concept of general gradient was introduced into the original Monte Carlo method,and an improved Monte Carlo method based on general negative gradient was proposed.
借鉴数值方法中梯度方法的思想,引进了广义负梯度方向的概念,给出了一种基于广义负梯度方向的Monte Carlo方法———GGMC方法。
5)  Clarke generalized gradient
Clarke广义梯度
1.
We prove that a Fritz John point expressed by Clarke generalized gradient is a Fritz John point expressed by quasidifferential.
证明了该问题拟微分形式下的FritzJohn点必是Clarke广义梯度形式下的FritzJohn点。
2.
By utilizing the notion of Filippov solution,Clarke generalized gradient and nonsmooth Lyapunov stability theory,a further discuss on sliding mode control is presented for second-order systems with a nonsmooth linear Lipschitz continuous sliding surface.
利用Filippov解、Clarke广义梯度和非光滑Lyapunov稳定理论,对一类滑模面设计为非光滑线性Lipschitz连续平面的二阶系统滑模控制问题进行深入讨论。
6)  Clarke's generalized gradient
Clarke广义梯度
补充资料:次切线和次法线


次切线和次法线
subtangent and subnormal

次切线和次法线【,奴。嗯翻ta己,由.刃nllal;no八Kaca-,一eJ,,,Ra”H”0八nOPM幼L」 有向线段QT和QN,它们是某一曲线在点M处的切线(tan罗nt line)段MT和法线(norlml)段对N在、轴上的投影(见图). 少l, 口‘吧不‘一一-一-一号-份甲间二 TO柑 如果达一曲线是函数y二‘j(x)的图形,则次切线和次法线的长度分别等于 。二__f(x)。、了_了丫、,、,,,_、 心T“一分书丁,QN=f(x)f’(x), 一f’(x)’乙一其中x是点M的横坐标.如果这一曲线由参数式给出: x=甲(t),夕=沙(t),则 。7’二一竺红纽自兰立。、,_竺立丝三旦 “一少‘(t)’“一少‘(t)其中t是确定曲线上点M的参数值.Bc3一3【补注】 IAI]Berger,M二Geo瑰t仃,2,SP力幻gcr.1989(中译 本二M.贝尔热,儿何,第一一五卷,科学出版社, 1987一1991). 工AZ j Go掀5 Te认eira,F,Tralt己des oourbes,l一3. Chelsea.犯Print,1971. 〔A3 1 Lamb,日二知6mtes,Inalc时e以us,Cambnd罗.U:uv. Press,1924.杜小杨译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条