1) simultaneous Pell equations
联立Pell方程组
1.
On the simultaneous Pell equations x~2 - 4D_1y~2 = 1 and y~2-D_2z~2= 1;
关于联立Pell方程组x~2-4D_1y~2=1和y~2-D_2z~2=1
2) Pell equations
Pell方程组
1.
By Gel’found-Baker method and the theory of Diophantine approximation,this paper discusses all the positive integer solutions of the Pell equations x~2-7y~2=2,32y~2-z~2=23,namely(x,y,z)=3,1,3),(717,271,1533).
利用Gel'found-Baker方法以及丢番图逼近的有关理论,证明了Pell方程组x~2-7y~2=2,32y~2-z~2=23仅有正整数解(x,y,z)=(3,1,3),(717,271,1533)。
3) simultaneous equations
联立方程组
1.
Linear simultaneous equations models of stand growth based on the permanent sample plots.;
建立在固定样地上的林分生长线性联立方程组模型研究
2.
These ways include the use of simultaneous equations, trigonometric functions and computer aided drawing software.
本文介绍了有直线和圆弧组成的零件轮廓的基点计算的有效方法,这些方法包括联立方程组法、三角函数法 和计算机绘图软件法。
5) Pell equation
Pell方程
1.
Some formulas for the solution of Pell equation;
Pell方程解的几个公式
2.
Solving Pell equations by Mathematica4;
运用Mathematica4软件包求解Pell方程的方法
3.
Solution Set of Pell Equation x~2-(a~2-1)y~2=k
Pell方程x~2-(a~2-1)y~2=k的解集
6) Pell equations
Pell方程
1.
In order to solve the miniinteger solution of Pell equations,we give algorithm of the Maple by using the continued fraction and also get the general program.
利用连分数的性质从理论上对Pell方程的最小整数解给出了一种算法,并利用Maple数学软件给出了用相应的求解Pell方程最小整数解的通用程序。
2.
Recursion solution on 2~(1/2) continued fraction and high precision solution on asymptotic fraction and high precision solution on asymptotic fraction are given to accomplish the Turbo C programme design on Pell equations.
本文给出n~(1/2)的次分数的递推算法与其渐近分数的高精度算法,完成求解Pell方程的Turbo C程序设计。
3.
In this paper, we gain Pell equations x 2-Dy 2 =±1 general purpose formaula, gain diophantine equations x(x+1)=2y 2 general purpose formula.
获得了 Pell方程 x2 - Dy2 =± 1的简洁递推关系及其通解公式 ,得到了方程 x(x+1 ) =2 y2的解集公
补充资料:联立方程
1.由两个以上的方程并列起来所得的新方程﹐其中用字母x﹑y等表示的未知数受每一个方程的制约。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条