1) lipschitz-type functions
Lipschitz型函数
2) Lipschitzian function
Lipschitz函数
1.
In this paper the convexity monotonic and correlation theory of functions are studied,are established new inequalities of Hadamard-type for convex functions,Lipschitzian functions and n-time differentiable functions,which generalize some previously known results in the literature.
研究了函数的凸性、单调性及相关理论,建立了关于凸函数、Lipschitz函数及n次可微函数的新的Hadamard型不等式,这些不等式推广了最近文献中的有关结果。
2.
Two new Hadamard type inequalities for convex functions and Lipschitzian functions are established,which are generalized previously known results in the literature.
研究了函数的凸性、单调性及相关理论,建立了关于凸函数、Lipschitz函数的两个新的Hadamard型不等式,这些不等式推广了最近文献中的有关结果。
3) Lipschitz functions
Lipschitz函数
1.
For a class of maximal commutators which are the variants of the usual maximal Calderón-Zygmund commutators associated with Calderón-Zygmund operators and Lipschitz functions,their boundedness in Lebesgue spaces is established and some endpoint estimates are obtained.
建立了一类与Calderón-Zygmund算子和Lipschitz函数相关的极大交换子在非齐型空间上的Lebesgue空间中的有界性以及某些端点估计。
2.
The boundedness is established of the commutators generated by Calderón-Zygmund operators or fractional integrals with RBMO(μ) functions or Lipschitz functions in Morrey spaces on nonhomogeneous spaces.
证明了由Calderón-Zygmund算子或分数次积分算子与RBMO(μ)函数以及Lipschitz函数生成的交换子在非齐型空间上的Morrey空间中的有界性。
4) Lipschitz function
Lipschitz函数
1.
In this paper,the continuity for some multilinear operators generated by the singular integral operators with variable Calderón-Zygmund kernel and Lipschitz functions on some Hardy and Herz-type spaces are proved.
证明带有可变Calderón-Zygmund核的奇异积分算子与Lipschitz函数生成的多线性算子在Hardy和Herz型空间的连续性问题。
2.
A necessary and sufficient condition that Clarke general directional derivative is equals to common directional derivative for locally Lipschitz function is given in this paper.
本文给出了局部Lipschitz函数的Clarke广义方向导数与普通方向导数相等的一个充要条件。
3.
This paper introduces on spaces homogeneous type Triebel-Lizorkin space β,∞p which is defined by Lipschitz function and Calderon-Zygmund singular integral operator T,and it introduces two commutators Cf,Caf which are decided by fractional integral operator Iαf(x).
在齐型空间X上引入由Lipschitz函数与Calderon-Zygmund奇异积分算子T定义的Triebel-Lizorkin空间。
5) Weak Lipschitz Function
弱Lipschitz函数
1.
Some Properties of Weak Lipschitz Function and It s Generalized Subgradient;
弱Lipschitz函数及其广义次梯度的几个性质
6) locally Lipschitz function
局部Lipschitz函数
1.
In this paper,the solution existence for quasilinear hemivariational inequality was analyzed using the variational method and the nonsmooth critical point theory of the locally Lipschitz function.
我们的方法是变分法及局部Lipschitz函数的非光滑临界点理论。
2.
This paper discusses the generalization of the deformation theorem and its application,and some new critical point theorems of locally Lipschitz functions are given based on some improved classical critical point theorems.
证明了一个形变定理,并由此得到局部Lipschitz函数的几个临界点定理,其结果改进了几个经典的临界点结论。
3.
In the present paper,some minimax theorems of locally Lipschitz functions are given by the Ekeland variational principle and tow critical point theorems are improved.
文章由Ekeland变分原理得到局部Lipschitz函数的几个极大极小定理,并改进了已有的两个临界点定理。
补充资料:S型函数
分子式:
CAS号:
性质:人工神经网络中常用的非线性变换函数。它是连续的、单调增长的、S型数值函数。S型函数一般有上下极限值[0,+1)或[-l,+1),当X→∞时,输出→1。S型函数具有一系列的优点,故应用甚广。
CAS号:
性质:人工神经网络中常用的非线性变换函数。它是连续的、单调增长的、S型数值函数。S型函数一般有上下极限值[0,+1)或[-l,+1),当X→∞时,输出→1。S型函数具有一系列的优点,故应用甚广。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条