1) curve equidistance
曲线等距线
1.
This article deduces the parametric equation of circular curve and relaxed curve equidistance, which provides theoretical basis for the correct measurement of curve equidistance.
导出了圆曲线和缓和曲线等距线的参数方程,为正确测设道路曲线等距线提供了理论依据,并进行了坐标转换,便于现场施测。
2) equidistance curve
等距曲线
1.
With the theory, any straight lines and quadratic curve′s equidistance curve can be indirectly interpolated with the help of outline and wire circle′s information, it is unnecessary to calculate equidistance curve.
该理论直接利用轮廓曲线和丝圆的信息 ,不需计算等距曲线 ,间接实现任意直线和二次曲线的等距曲线的插补 ,有效地避免了传统计算等距曲线产生的计算误差 ,简化了数控机床控制程序设计 ,提高了机床的控制精度。
3) offset curve
等距曲线
1.
Rational approximation of offset curves by s-power basis;
等距曲线的S幂基有理逼近
2.
A new method of rational approximation of the offset curves of planar Bézier Curves;
平面Bézier曲线的等距曲线有理逼近新方法
3.
To some extent, using a plane curve to approximate an offset curve of the plane Bézier curve is restricted.
用一条平面曲线来逼近平面Bézier曲线的等距曲线具有一定的局限性。
4) equidistant curve
等距曲线
1.
According to the concept of envelope evaluates equation of contour,the conclusion can be reached that the contour of torus is colse elliptc equidistant curve but is not ellipse.
根据包络的概念解出轮廓线的方程式,从而得出结论:圆环面的轮廓线是封闭的椭圆等距曲线,而不是椭圆。
5) offset curves
等距曲线
1.
Parametric speed approximation is crucial to the approximation of offset curves.
等距曲线逼近的关键在于对其参数速度的逼近,给出了Said-Bézier曲线参数速度的Tchebyshev逼近和Tchebyshev-Padé逼近,在此基础上得到了Said-Bézier曲线的等距曲线的2种有理逼近函数。
2.
Therefore ,the study of offset curves has become a hot topic of CAGD.
等距曲线在计算机图形及三维数控机床等方面的应用非常广泛,因此目前关于等距曲线的研究,已成为CAGD中的一个热门课题。
3.
In chapter one, we firstly review the phytogeny of the offset curves, then summarize PH curves and OR curves concerning the inherited geometric structure of offset curves.
等距曲线也称为平行或位差曲线,它是基曲线沿法向距离为d的点的轨迹,为近十年来计算机辅助几何设计(CAGD)的一个热门研究课题。
补充资料:渐屈线(平面曲线的)
渐屈线(平面曲线的)
evohite (of a pbne curve)
渐屈线(平面曲线的)【e,浦血何a内I此。口,e);”。几犯-Ta.月oc,0.鱿P二o面」 已知曲线7的曲率中心的集合下.若r二r(s)(其中、是7的弧长参数)是7的方程,则它的渐屈线的方程有如下形状: *r+去,,其中k是曲率而,是下的单位法向量.下图显示了三种典型情形下渐屈线的构造: a)若沿整条曲线k’有固定符号且k不为零;今赚条‘b S0 图c b)若沿整条曲线k’有固定符号且k在s=s。处为零; e)若对于s
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条