1) mixed power mean
混合幂平均
1.
Two mixed power mean inequalities are established by using the method of infinitesimal calculus, with which the wellHolland s conjecture is generalized.
利用不等式的经典理论和严格的分析方法,建立了混合幂平均值的两个不等式,推广著名的F。
2) mixed differences function of power means
混合幂均差函数
1.
Isolate of mean inequality resulting from mixed differences function of power means;
混合幂均差函数对平均不等式的隔离
3) power mean
幂平均
1.
Optimal values for inequalities involving power means and its computer actualization;
幂平均不等式的最优值及其机器实现
2.
An inequality for power mean;
关于幂平均的一个不等式
3.
Some remarks for D_(a,b)(x,y) and the inequalities for logarithmicmean,Heronian mean of order p,and power mean of order q are obtained.
本文给出了几个关于Da,b(x,y)的注记和对数平均、Heronian平均及幂平均的几个不等式。
4) generalized weighted mean value
线幂平均
5) power mean family
幂平均族
6) square powers mean
方幂平均
1.
For the harmonic mean,geometric mean,arithmetic mean,square powers mean of two positive numbers a,b(0<a≤b),this paper gives strengthened form: T(a,b,θ)=(a~2 cos~2θ+b~2sin~2θ)~(1/2){0≤a≤b,0≤θ≤π/2) and give one these are four kinds of strengthen for
将两正数a,b的调和、几何、算术、方幂平均统一为: T(a,b,θ)=(a~2cos~2θ+b~2sin~2θ)~(1/2)(0≤a≤b,0≤θ≤π/2)①并给出这四种平均的加强。
补充资料:幂平均
设a1,a2,…,an为n个正数,则mr(a1,a2,…,an)=ar1+ar2+…+arnn1r称为这n个正数的r次幂平均。当r=1时,即为算术平均;当r→0时,mr(a)的极限存在,即为几何平均;当r=-1时,即为调和平均。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条